PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1970.
Published online 2010 July 10. doi:  10.1107/S1600536810026504
PMCID: PMC3007408

Tetra­butyl­ammonium N-benzoyl-6-nitro-1,3-benzothia­zol-2-aminide

Abstract

In the title salt, C16H36N+·C14H8N3O3S, the torsion angles within the cation reveal that one butyl group displays an anti conformation and the other three butyl groups show gauche conformations. The anion is almost planar, with a largest deviation of 0.166 (6) Å from the least-squares plane (r.m.s. deviation of fitted atoms = 0.052 Å). In the crystal structure, the component ions inter­act by means of weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the development of colorimetric chemosensors, see: Coll et al. (2007 [triangle]); Evans et al. (2006 [triangle]). For similar deprotonation reactions, see: Kang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1970-scheme1.jpg

Experimental

Crystal data

  • C16H36N+·C14H8N3O3S
  • M r = 540.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1970-efi1.jpg
  • a = 7.9234 (7) Å
  • b = 25.059 (2) Å
  • c = 15.4916 (14) Å
  • β = 97.699 (2)°
  • V = 3048.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 223 K
  • 0.22 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.979, T max = 0.988
  • 11371 measured reflections
  • 5730 independent reflections
  • 2547 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.169
  • S = 0.95
  • 5730 reflections
  • 347 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1908 Friedel pairs
  • Flack parameter: 0.08 (12)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026504/lx2157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026504/lx2157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (20090076626).

supplementary crystallographic information

Comment

The development of colorimetric chemosensors is attractive in supramolecular chemistry because they give a direct signal which is easily observed by the naked eye (Coll et al., 2007). Most chemosensors contain –NH fragments which act as hydrogen bond donors for the binding of anions. However, the chromophore fragments for colorimetric signal may contain electron-withdrawing groups that enhance the acidity of the –NH protons of the binding site. Therefore, these acidic protons can be abstracted by the basic anions in the deprotonation process (Evans et al., 2006). In some cases, it is difficult to establish a clear difference between a hydrogen bond donor binding process and a deprotonation process. The title salt was prepared on the study of the nature of interaction between N-(6-nitrobenzo[d]thiazol-2-yl)benzamide and tetrabutylammonium acetate (Kang et al., 2009).

The asymmetric unit of the title salt, C16H36N+.C14H8N3O3S-, contains a tetrabutylammonium cation and a deprotonated anion of N-(6-nitrobenzo[d]thiazol-2-yl)benzamide (Fig. 1). The C15—C16—C17—C18 torsion angle of -179.9 (7)° displays the anti conformation for the four atoms of a butyl group within the cation, whereas the other three butyl groups show the gauche conformations with the torsion angles of -74.8 (7)° (C19—C20—C21—C22), -75.7 (8)° (C23—C24—C25—C26) and -65.9 (9)° (C27—C28—C29—C30)°. The anion is almost planar with the largest deviation of 0.166 (6) Å (O2) from the least-squares plane (r.m.s. deviation of fitted atoms: 0.052 Å). In the crystal structure, the component ions interact by means of weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

A solution of 6-nitrobenzo[d]thiazol-2-amine (0.300 mg, 1.54 mmol) and benzoyl chloride (0.148 ml, 1.28 mmol) in pyridine was refluxed for 24 h under argon atmosphere. Upon completion of the reaction, the reaction mixture was cooled to 0 °C, and poured into water. The formed precipitate was separated by filtration and washed with methanol, dichloromethane and ether and dried, to give a yellow solid N-(6-nitrobenzo[d]thiazol-2-yl)benzamide (0.192 g, yield 50%). Crystals of the title compound suitable for X-ray analysis were obtained in a deprotonation reaction that involved slow evaporation of an acetonitrile solution of N-(6-nitrobenzo[d]thiazol-2-yl)benzamide in the presence of excess tetrabutylammonium acetate at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.94 (CH), 0.98 (CH2) or 0.97 Å (CH3) and Uiso(H) = 1.2Ueq or 1.5Ueq(methyl C)].

Figures

Fig. 1.
The structure of the title salt, with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted.
Fig. 2.
View of the unit-cell contents of the title salt. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

C16H36N+·C14H8N3O3SF(000) = 1168
Mr = 540.75Dx = 1.178 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1597 reflections
a = 7.9234 (7) Åθ = 2.7–19.4°
b = 25.059 (2) ŵ = 0.14 mm1
c = 15.4916 (14) ÅT = 223 K
β = 97.699 (2)°Block, yellow
V = 3048.2 (5) Å30.22 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer5730 independent reflections
Radiation source: fine-focus sealed tube2547 reflections with I > 2σ(I)
graphiteRint = 0.076
[var phi] and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→10
Tmin = 0.979, Tmax = 0.988k = −33→29
11371 measured reflectionsl = −19→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.169w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
5730 reflectionsΔρmax = 0.25 e Å3
347 parametersΔρmin = −0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 1908 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.08 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.70508 (16)0.32664 (5)0.33449 (9)0.0502 (4)
O10.6825 (5)0.22458 (14)0.3155 (3)0.0623 (11)
O20.8146 (9)0.57535 (19)0.3706 (4)0.131 (2)
O30.8142 (7)0.52224 (19)0.4779 (4)0.0984 (16)
N10.6279 (5)0.26786 (17)0.1823 (3)0.0505 (11)
N20.6516 (5)0.36006 (18)0.1718 (3)0.0521 (11)
N30.7979 (7)0.5308 (2)0.3993 (5)0.0829 (16)
C10.6094 (7)0.1727 (2)0.1884 (4)0.0573 (15)
C20.6156 (8)0.1257 (2)0.2357 (5)0.0767 (19)
H20.64050.12720.29670.092*
C30.5860 (10)0.0768 (3)0.1957 (6)0.102 (3)
H30.58660.04540.22900.123*
C40.5553 (9)0.0746 (3)0.1050 (7)0.099 (3)
H40.53790.04150.07670.119*
C50.5504 (9)0.1211 (3)0.0569 (5)0.088 (2)
H50.53190.1197−0.00430.106*
C60.5723 (7)0.1689 (2)0.0985 (4)0.0640 (16)
H60.56210.20040.06520.077*
C70.6423 (6)0.2240 (2)0.2350 (4)0.0521 (14)
C80.6573 (6)0.3158 (2)0.2190 (3)0.0472 (14)
C90.7132 (6)0.3942 (2)0.3138 (3)0.0457 (13)
C100.7471 (7)0.4359 (2)0.3727 (4)0.0544 (14)
H100.76500.42950.43300.065*
C110.7536 (7)0.4870 (2)0.3401 (4)0.0628 (17)
C120.7267 (8)0.4976 (2)0.2513 (5)0.0748 (19)
H120.73190.53290.23110.090*
C130.6920 (8)0.4558 (2)0.1925 (4)0.0687 (17)
H130.67450.46250.13220.082*
C140.6833 (6)0.4036 (2)0.2238 (4)0.0486 (13)
N40.1005 (5)0.30363 (16)0.0850 (3)0.0481 (10)
C150.2355 (7)0.3308 (2)0.0382 (4)0.0585 (15)
H15A0.34730.32440.07210.070*
H15B0.23560.3136−0.01850.070*
C160.2155 (8)0.3893 (2)0.0237 (4)0.080 (2)
H16A0.21580.40730.07990.096*
H16B0.10580.3964−0.01160.096*
C170.3571 (8)0.4115 (3)−0.0218 (5)0.093 (2)
H17A0.35650.3932−0.07770.111*
H17B0.46650.40400.01370.111*
C180.3428 (11)0.4709 (3)−0.0380 (8)0.179 (5)
H18A0.34980.48960.01730.268*
H18B0.23450.4788−0.07270.268*
H18C0.43500.4826−0.06890.268*
C190.0817 (6)0.3310 (2)0.1697 (3)0.0524 (14)
H19A−0.00170.31120.19840.063*
H19B0.03520.36680.15670.063*
C200.2431 (7)0.3364 (2)0.2329 (4)0.0604 (15)
H20A0.32980.35480.20440.073*
H20B0.28660.30080.25030.073*
C210.2101 (9)0.3676 (3)0.3135 (4)0.0762 (19)
H21A0.10710.35340.33380.091*
H21B0.30530.36150.35970.091*
C220.1894 (11)0.4244 (3)0.3004 (6)0.117 (3)
H22A0.28980.43890.27930.176*
H22B0.17440.44130.35510.176*
H22C0.09020.43110.25790.176*
C230.1534 (6)0.2459 (2)0.0986 (4)0.0578 (15)
H23A0.26730.24500.13220.069*
H23B0.16200.23000.04150.069*
C240.0357 (7)0.21084 (19)0.1452 (5)0.0713 (19)
H24A0.03260.22490.20400.086*
H24B−0.08000.21280.11380.086*
C250.0915 (9)0.1527 (3)0.1516 (6)0.100 (2)
H25A0.21430.15170.17110.120*
H25B0.03490.13550.19670.120*
C260.0580 (11)0.1222 (3)0.0743 (6)0.130 (3)
H26A0.11300.13880.02880.195*
H26B−0.06390.12070.05620.195*
H26C0.10200.08640.08500.195*
C27−0.0763 (6)0.3079 (2)0.0309 (3)0.0546 (14)
H27A−0.16130.29420.06570.066*
H27B−0.10170.34570.01910.066*
C28−0.0946 (8)0.2782 (3)−0.0552 (4)0.095 (2)
H28A0.00290.2864−0.08570.114*
H28B−0.09470.2397−0.04410.114*
C29−0.2574 (10)0.2935 (3)−0.1122 (5)0.098 (2)
H29A−0.25810.3323−0.11990.117*
H29B−0.25600.2773−0.16970.117*
C30−0.4061 (10)0.2790 (4)−0.0820 (5)0.132 (3)
H30A−0.40540.2921−0.02310.198*
H30B−0.41590.2404−0.08240.198*
H30C−0.50210.2942−0.11940.198*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0514 (8)0.0594 (7)0.0391 (7)0.0010 (8)0.0035 (6)0.0034 (7)
O10.078 (3)0.066 (2)0.042 (3)−0.003 (2)0.006 (2)0.003 (2)
O20.220 (7)0.058 (3)0.109 (5)−0.020 (3)0.003 (4)−0.002 (3)
O30.130 (5)0.089 (3)0.073 (4)0.000 (3)0.000 (3)−0.023 (3)
N10.050 (3)0.059 (3)0.044 (3)0.003 (2)0.008 (2)−0.001 (2)
N20.050 (3)0.062 (3)0.044 (3)0.002 (2)0.004 (2)0.006 (2)
N30.095 (4)0.071 (4)0.079 (5)−0.004 (3)−0.001 (3)−0.008 (4)
C10.045 (3)0.065 (4)0.063 (4)−0.001 (3)0.007 (3)−0.001 (4)
C20.090 (5)0.054 (4)0.082 (5)−0.015 (3)−0.001 (4)−0.008 (4)
C30.124 (7)0.068 (5)0.110 (8)−0.012 (4)0.001 (6)0.006 (5)
C40.091 (6)0.097 (6)0.108 (7)−0.029 (5)0.010 (5)−0.031 (6)
C50.094 (6)0.096 (5)0.076 (5)−0.016 (4)0.016 (4)−0.030 (5)
C60.056 (4)0.074 (4)0.060 (4)−0.004 (3)0.004 (3)−0.012 (4)
C70.034 (3)0.066 (4)0.057 (4)0.002 (3)0.012 (3)−0.001 (3)
C80.033 (3)0.069 (4)0.041 (3)0.006 (3)0.009 (2)0.005 (3)
C90.038 (3)0.059 (3)0.041 (4)−0.003 (3)0.004 (3)0.001 (3)
C100.050 (3)0.063 (4)0.049 (4)0.005 (3)0.003 (3)0.002 (3)
C110.071 (5)0.052 (3)0.064 (4)0.000 (3)0.005 (4)−0.011 (4)
C120.091 (5)0.062 (4)0.069 (5)0.007 (3)0.001 (4)0.014 (4)
C130.084 (5)0.061 (4)0.059 (4)−0.003 (3)0.001 (3)0.010 (3)
C140.044 (3)0.054 (3)0.048 (4)0.007 (3)0.002 (3)0.008 (3)
N40.035 (2)0.068 (3)0.041 (3)0.004 (2)0.0049 (19)−0.007 (2)
C150.048 (3)0.075 (4)0.054 (4)−0.003 (3)0.011 (3)−0.001 (3)
C160.061 (4)0.100 (5)0.081 (5)0.008 (4)0.017 (4)0.031 (4)
C170.057 (4)0.128 (6)0.089 (6)−0.023 (4)−0.002 (4)0.039 (5)
C180.107 (8)0.141 (7)0.284 (15)−0.005 (6)0.013 (8)0.150 (9)
C190.044 (3)0.071 (3)0.043 (3)0.001 (3)0.007 (3)−0.005 (3)
C200.049 (3)0.073 (4)0.058 (4)−0.006 (3)0.003 (3)−0.003 (3)
C210.064 (4)0.105 (5)0.056 (5)−0.006 (4)−0.003 (3)−0.023 (4)
C220.101 (6)0.095 (5)0.154 (10)−0.012 (5)0.011 (6)−0.050 (6)
C230.038 (3)0.057 (3)0.076 (4)0.005 (3)0.000 (3)−0.005 (3)
C240.051 (4)0.058 (3)0.103 (6)−0.002 (3)0.004 (4)0.006 (4)
C250.079 (5)0.090 (5)0.127 (8)0.000 (4)−0.003 (5)0.003 (5)
C260.134 (8)0.134 (6)0.111 (8)0.058 (6)−0.027 (6)−0.051 (6)
C270.038 (3)0.081 (4)0.044 (3)0.007 (3)0.000 (2)−0.006 (3)
C280.058 (4)0.175 (7)0.048 (4)0.002 (4)−0.008 (3)−0.024 (4)
C290.094 (6)0.125 (6)0.067 (5)−0.027 (5)−0.014 (4)−0.006 (5)
C300.069 (5)0.238 (11)0.084 (6)0.004 (6)−0.012 (4)−0.033 (7)

Geometric parameters (Å, °)

S1—C91.725 (5)C17—H17A0.9800
S1—C81.799 (5)C17—H17B0.9800
O1—C71.245 (6)C18—H18A0.9700
O2—N31.216 (7)C18—H18B0.9700
O3—N31.226 (7)C18—H18C0.9700
N1—C81.335 (6)C19—C201.509 (7)
N1—C71.365 (7)C19—H19A0.9800
N2—C81.327 (6)C19—H19B0.9800
N2—C141.360 (7)C20—C211.525 (8)
N3—C111.441 (7)C20—H20A0.9800
C1—C21.383 (8)C20—H20B0.9800
C1—C61.388 (8)C21—C221.444 (8)
C1—C71.480 (7)C21—H21A0.9800
C2—C31.380 (8)C21—H21B0.9800
C2—H20.9400C22—H22A0.9700
C3—C41.394 (11)C22—H22B0.9700
C3—H30.9400C22—H22C0.9700
C4—C51.380 (10)C23—C241.530 (7)
C4—H40.9400C23—H23A0.9800
C5—C61.361 (8)C23—H23B0.9800
C5—H50.9400C24—C251.521 (8)
C6—H60.9400C24—H24A0.9800
C9—C101.390 (7)C24—H24B0.9800
C9—C141.402 (7)C25—C261.415 (10)
C10—C111.381 (7)C25—H25A0.9800
C10—H100.9400C25—H25B0.9800
C11—C121.388 (8)C26—H26A0.9700
C12—C131.394 (8)C26—H26B0.9700
C12—H120.9400C26—H26C0.9700
C13—C141.398 (7)C27—C281.517 (8)
C13—H130.9400C27—H27A0.9800
N4—C191.505 (6)C27—H27B0.9800
N4—C231.513 (6)C28—C291.511 (9)
N4—C151.531 (6)C28—H28A0.9800
N4—C271.537 (6)C28—H28B0.9800
C15—C161.487 (7)C29—C301.373 (9)
C15—H15A0.9800C29—H29A0.9800
C15—H15B0.9800C29—H29B0.9800
C16—C171.509 (8)C30—H30A0.9700
C16—H16A0.9800C30—H30B0.9700
C16—H16B0.9800C30—H30C0.9700
C17—C181.511 (9)
C9—S1—C888.4 (3)C17—C18—H18C109.5
C8—N1—C7118.3 (5)H18A—C18—H18C109.5
C8—N2—C14110.8 (5)H18B—C18—H18C109.5
O2—N3—O3121.4 (7)N4—C19—C20115.6 (4)
O2—N3—C11119.7 (7)N4—C19—H19A108.4
O3—N3—C11118.9 (6)C20—C19—H19A108.4
C2—C1—C6117.5 (6)N4—C19—H19B108.4
C2—C1—C7119.3 (6)C20—C19—H19B108.4
C6—C1—C7123.2 (5)H19A—C19—H19B107.4
C3—C2—C1121.7 (7)C19—C20—C21110.7 (5)
C3—C2—H2119.1C19—C20—H20A109.5
C1—C2—H2119.1C21—C20—H20A109.5
C2—C3—C4119.0 (7)C19—C20—H20B109.5
C2—C3—H3120.5C21—C20—H20B109.5
C4—C3—H3120.5H20A—C20—H20B108.1
C5—C4—C3120.0 (7)C22—C21—C20114.8 (6)
C5—C4—H4120.0C22—C21—H21A108.6
C3—C4—H4120.0C20—C21—H21A108.6
C6—C5—C4119.6 (8)C22—C21—H21B108.6
C6—C5—H5120.2C20—C21—H21B108.6
C4—C5—H5120.2H21A—C21—H21B107.5
C5—C6—C1122.1 (6)C21—C22—H22A109.5
C5—C6—H6118.9C21—C22—H22B109.5
C1—C6—H6118.9H22A—C22—H22B109.5
O1—C7—N1125.4 (6)C21—C22—H22C109.5
O1—C7—C1120.2 (6)H22A—C22—H22C109.5
N1—C7—C1114.4 (5)H22B—C22—H22C109.5
N2—C8—N1121.7 (5)N4—C23—C24116.1 (4)
N2—C8—S1114.1 (4)N4—C23—H23A108.3
N1—C8—S1124.2 (4)C24—C23—H23A108.3
C10—C9—C14121.2 (5)N4—C23—H23B108.3
C10—C9—S1128.6 (4)C24—C23—H23B108.3
C14—C9—S1110.2 (4)H23A—C23—H23B107.4
C11—C10—C9118.1 (5)C25—C24—C23113.0 (5)
C11—C10—H10120.9C25—C24—H24A109.0
C9—C10—H10120.9C23—C24—H24A109.0
C10—C11—C12122.1 (6)C25—C24—H24B109.0
C10—C11—N3119.4 (6)C23—C24—H24B109.0
C12—C11—N3118.5 (6)H24A—C24—H24B107.8
C11—C12—C13119.6 (6)C26—C25—C24116.2 (7)
C11—C12—H12120.2C26—C25—H25A108.2
C13—C12—H12120.2C24—C25—H25A108.2
C12—C13—C14119.4 (6)C26—C25—H25B108.2
C12—C13—H13120.3C24—C25—H25B108.2
C14—C13—H13120.3H25A—C25—H25B107.4
N2—C14—C13123.9 (5)C25—C26—H26A109.5
N2—C14—C9116.5 (5)C25—C26—H26B109.5
C13—C14—C9119.6 (6)H26A—C26—H26B109.5
C19—N4—C23111.9 (4)C25—C26—H26C109.5
C19—N4—C15111.5 (4)H26A—C26—H26C109.5
C23—N4—C15107.1 (4)H26B—C26—H26C109.5
C19—N4—C27104.7 (4)C28—C27—N4114.7 (4)
C23—N4—C27111.0 (4)C28—C27—H27A108.6
C15—N4—C27110.7 (4)N4—C27—H27A108.6
C16—C15—N4116.3 (4)C28—C27—H27B108.6
C16—C15—H15A108.2N4—C27—H27B108.6
N4—C15—H15A108.2H27A—C27—H27B107.6
C16—C15—H15B108.2C29—C28—C27111.3 (6)
N4—C15—H15B108.2C29—C28—H28A109.4
H15A—C15—H15B107.4C27—C28—H28A109.4
C15—C16—C17111.3 (5)C29—C28—H28B109.4
C15—C16—H16A109.4C27—C28—H28B109.4
C17—C16—H16A109.4H28A—C28—H28B108.0
C15—C16—H16B109.4C30—C29—C28116.0 (7)
C17—C16—H16B109.4C30—C29—H29A108.3
H16A—C16—H16B108.0C28—C29—H29A108.3
C16—C17—C18113.4 (6)C30—C29—H29B108.3
C16—C17—H17A108.9C28—C29—H29B108.3
C18—C17—H17A108.9H29A—C29—H29B107.4
C16—C17—H17B108.9C29—C30—H30A109.5
C18—C17—H17B108.9C29—C30—H30B109.5
H17A—C17—H17B107.7H30A—C30—H30B109.5
C17—C18—H18A109.5C29—C30—H30C109.5
C17—C18—H18B109.5H30A—C30—H30C109.5
H18A—C18—H18B109.5H30B—C30—H30C109.5
C6—C1—C2—C3−0.1 (9)N3—C11—C12—C13176.9 (6)
C7—C1—C2—C3−179.9 (6)C11—C12—C13—C140.5 (9)
C1—C2—C3—C42.4 (11)C8—N2—C14—C13177.6 (5)
C2—C3—C4—C5−1.7 (12)C8—N2—C14—C9−0.6 (6)
C3—C4—C5—C6−1.3 (11)C12—C13—C14—N2−179.4 (5)
C4—C5—C6—C13.7 (10)C12—C13—C14—C9−1.3 (8)
C2—C1—C6—C5−3.0 (8)C10—C9—C14—N2179.9 (5)
C7—C1—C6—C5176.9 (5)S1—C9—C14—N21.2 (6)
C8—N1—C7—O1−0.6 (7)C10—C9—C14—C131.7 (8)
C8—N1—C7—C1−179.3 (4)S1—C9—C14—C13−177.1 (4)
C2—C1—C7—O13.1 (8)C19—N4—C15—C16−53.1 (6)
C6—C1—C7—O1−176.7 (5)C23—N4—C15—C16−175.8 (5)
C2—C1—C7—N1−178.1 (5)C27—N4—C15—C1663.1 (6)
C6—C1—C7—N12.0 (7)N4—C15—C16—C17179.3 (6)
C14—N2—C8—N1179.1 (4)C15—C16—C17—C18−179.9 (7)
C14—N2—C8—S1−0.3 (5)C23—N4—C19—C2064.5 (5)
C7—N1—C8—N2177.6 (4)C15—N4—C19—C20−55.4 (6)
C7—N1—C8—S1−3.1 (6)C27—N4—C19—C20−175.2 (5)
C9—S1—C8—N20.8 (4)N4—C19—C20—C21176.5 (5)
C9—S1—C8—N1−178.5 (4)C19—C20—C21—C22−74.8 (7)
C8—S1—C9—C10−179.7 (5)C19—N4—C23—C2457.3 (6)
C8—S1—C9—C14−1.0 (4)C15—N4—C23—C24179.7 (5)
C14—C9—C10—C11−1.2 (8)C27—N4—C23—C24−59.3 (6)
S1—C9—C10—C11177.3 (4)N4—C23—C24—C25176.6 (5)
C9—C10—C11—C120.4 (8)C23—C24—C25—C26−75.7 (8)
C9—C10—C11—N3−176.5 (5)C19—N4—C27—C28−174.3 (5)
O2—N3—C11—C10175.3 (6)C23—N4—C27—C28−53.4 (6)
O3—N3—C11—C10−6.4 (9)C15—N4—C27—C2865.4 (6)
O2—N3—C11—C12−1.7 (9)N4—C27—C28—C29−168.3 (5)
O3—N3—C11—C12176.6 (6)C27—C28—C29—C30−65.9 (9)
C10—C11—C12—C13−0.1 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C28—H28A···O1i0.982.243.166 (8)157
C29—H29A···O2ii0.982.393.353 (9)166

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x−1, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2157).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coll, C., Martinez-Manez, R., Dolores, M. M., Sancenon, F. & Soto, J. (2007). Angew. Chem. Int. Ed.46, 1675–1678. [PubMed]
  • Evans, L. S., Gale, P. A., Light, M. E. & Quesada, R. (2006). Chem. Commun. pp. 965–967. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kang, S. O., Nguyen, Q. P. B. & Kim, T. H. (2009). Bull. Korean Chem. Soc.30, 2735–2738.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography