PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2125.
Published online 2010 July 24. doi:  10.1107/S1600536810028850
PMCID: PMC3007406

5,8-Dibromo-2,11-dithia­[3,3](2,6)pyridino­paracyclo­phane

Abstract

The title compound, C15H13Br2NS2 [systematic name: 12,15-dibromo-2,7-dithia-1(1,4)-benzena-5(2,6)-pyridinaocta­phane], contains a dibromo-substituted benzene ring and a pyridine ring that are linked by a pair of bridging —CH2SCH2— groups. There is a weak π–π inter­action between the rings, the distance between the ring centroids being 3.572 (4) Å. The rings are not parallel, but form a dihedral angle of 18.29 (4)°.

Related literature

For the preparation of the title compound, see: Kay & Baek (1997 [triangle]); Scheytza et al. (1999 [triangle]); Xu et al. (2008 [triangle]). For further information on paracyclo­phane and its derivatives, see: Wang et al. (2006 [triangle]); Yamamoto et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2125-scheme1.jpg

Experimental

Crystal data

  • C15H13Br2NS2
  • M r = 431.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2125-efi1.jpg
  • a = 8.9275 (15) Å
  • b = 18.879 (3) Å
  • c = 9.3213 (15) Å
  • β = 103.878 (3)°
  • V = 1525.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.58 mm−1
  • T = 298 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.452, T max = 0.573
  • 11428 measured reflections
  • 3775 independent reflections
  • 3018 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.078
  • S = 1.03
  • 3775 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028850/pk2253sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028850/pk2253Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Sheng-Hua Liu for technical assistance and Dr Jian-Long Xia for the data collection.

supplementary crystallographic information

Comment

In our research, we have synthesized the title compound 5,8-dibromo-2,11-dithia[3,3] (2,6)pyridinoparacyclophane. In the crystal structure, there are no classical hydrogen bonds, but is a weak π–π interaction. The distance between the centroid of the pyridine ring and the centroid of the benzene ring is 3.574 (4) Å, in addition, the angle between pyridine ring and the benzene ring is 18.29 (4)°.

Experimental

The title compound was synthesized according to a modified literature procedure (Scheytza et al., 1999).

A solution with equimolar amounts of the dithiol(3.26g, 10mmol) and 2,6-bis(bromomethyl) pyridine in degassed THF (500 mL) was added dropwise under N2 over 12 h to a refluxing solution of K2CO3(6.9g,50mmol) in EtOH (1.5 L). After an additional 2h at the reflux temperature, the mixture was cooled and the solvent. The resulting residue was treated with CH2Cl2 (500 mL) and water (500mL). The organic phase was separated, and the aqueous layer extracted with CH2Cl2 three times. The combined organic layers were dried over MgSO4, then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2 as eluent. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane-n-hexane (1:30) solution over a period of 6 hours.

Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) =1.2Ueq(C) for methylene.

Figures

Fig. 1.
A view of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C15H13Br2NS2F(000) = 848
Mr = 431.20Dx = 1.878 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4039 reflections
a = 8.9275 (15) Åθ = 2.5–27.8°
b = 18.879 (3) ŵ = 5.58 mm1
c = 9.3213 (15) ÅT = 298 K
β = 103.878 (3)°Block, colorless
V = 1525.2 (4) Å30.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3775 independent reflections
Radiation source: fine-focus sealed tube3018 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.452, Tmax = 0.573k = −25→25
11428 measured reflectionsl = −10→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0414P)2 + 0.2049P] where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.63099 (3)0.048688 (14)0.87832 (3)0.04897 (10)
Br20.22924 (4)0.139645 (16)0.22281 (3)0.05124 (10)
C10.3799 (3)0.03373 (12)0.6206 (3)0.0338 (5)
C20.5079 (3)0.07344 (12)0.6886 (3)0.0334 (5)
C30.5520 (3)0.13348 (12)0.6246 (3)0.0331 (5)
H30.63840.15870.67420.040*
C40.4686 (3)0.15680 (13)0.4867 (3)0.0324 (5)
C50.3444 (3)0.11522 (13)0.4148 (3)0.0338 (5)
C60.3002 (3)0.05574 (12)0.4802 (3)0.0372 (5)
H60.21540.02980.42950.045*
C70.5137 (3)0.22521 (13)0.4279 (3)0.0383 (6)
H7A0.51800.21810.32590.046*
H7B0.61680.23760.48350.046*
C80.3410 (3)0.28873 (14)0.6143 (3)0.0371 (5)
H8A0.43320.27270.68490.045*
H8B0.31340.33460.64710.045*
C90.2123 (3)0.23745 (12)0.6156 (2)0.0301 (5)
C100.0700 (3)0.24389 (14)0.5179 (3)0.0382 (5)
H100.05010.28100.45050.046*
C11−0.0417 (3)0.19455 (15)0.5220 (3)0.0414 (6)
H11−0.13890.19820.45800.050*
C12−0.0085 (3)0.13961 (13)0.6216 (3)0.0387 (6)
H12−0.08190.10500.62430.046*
C130.1362 (3)0.13660 (11)0.7180 (3)0.0308 (5)
C140.1781 (3)0.07834 (13)0.8309 (3)0.0384 (6)
H14A0.11710.08400.90340.046*
H14B0.28580.08350.88200.046*
C150.3230 (3)−0.02833 (13)0.6927 (3)0.0426 (6)
H15A0.4036−0.04300.77700.051*
H15B0.3036−0.06740.62320.051*
N10.2443 (2)0.18540 (10)0.7172 (2)0.0302 (4)
S10.14839 (8)−0.01069 (3)0.75438 (8)0.04531 (17)
S20.38563 (7)0.29931 (3)0.43559 (7)0.03722 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.05493 (19)0.04386 (16)0.03946 (16)0.00297 (12)−0.00566 (13)0.01018 (11)
Br20.0613 (2)0.05608 (19)0.02904 (15)0.00966 (13)−0.00356 (12)−0.00142 (11)
C10.0373 (13)0.0296 (11)0.0345 (13)0.0066 (9)0.0086 (10)−0.0027 (10)
C20.0351 (13)0.0354 (12)0.0282 (12)0.0097 (10)0.0047 (10)0.0013 (9)
C30.0287 (12)0.0383 (12)0.0322 (12)0.0040 (9)0.0072 (10)0.0009 (10)
C40.0294 (12)0.0381 (12)0.0320 (12)0.0091 (9)0.0122 (10)0.0014 (10)
C50.0348 (13)0.0402 (12)0.0257 (11)0.0097 (10)0.0059 (9)−0.0032 (10)
C60.0368 (13)0.0375 (12)0.0351 (13)0.0034 (10)0.0045 (11)−0.0088 (10)
C70.0337 (13)0.0467 (14)0.0379 (13)0.0047 (10)0.0150 (10)0.0061 (11)
C80.0401 (14)0.0384 (13)0.0332 (13)−0.0020 (10)0.0095 (11)−0.0027 (10)
C90.0348 (12)0.0311 (11)0.0268 (11)0.0025 (9)0.0123 (9)−0.0041 (9)
C100.0388 (13)0.0422 (13)0.0330 (13)0.0072 (11)0.0075 (10)0.0056 (10)
C110.0263 (12)0.0571 (16)0.0394 (14)0.0082 (11)0.0049 (10)0.0043 (12)
C120.0312 (13)0.0447 (14)0.0404 (14)−0.0040 (10)0.0092 (11)−0.0022 (11)
C130.0314 (12)0.0345 (12)0.0283 (12)0.0030 (9)0.0105 (9)−0.0032 (9)
C140.0462 (15)0.0374 (13)0.0332 (13)0.0031 (11)0.0122 (11)0.0017 (10)
C150.0517 (16)0.0303 (12)0.0441 (15)0.0008 (11)0.0082 (12)−0.0017 (11)
N10.0309 (10)0.0332 (10)0.0277 (10)0.0038 (7)0.0093 (8)−0.0038 (8)
S10.0464 (4)0.0343 (3)0.0559 (4)−0.0053 (3)0.0138 (3)0.0052 (3)
S20.0394 (3)0.0376 (3)0.0363 (3)0.0021 (2)0.0123 (3)0.0090 (3)

Geometric parameters (Å, °)

Br1—C21.903 (2)C8—H8B0.9700
Br2—C51.895 (2)C9—N11.347 (3)
C1—C21.386 (3)C9—C101.379 (3)
C1—C61.395 (3)C10—C111.371 (4)
C1—C151.498 (4)C10—H100.9300
C2—C31.381 (3)C11—C121.377 (4)
C3—C41.393 (3)C11—H110.9300
C3—H30.9300C12—C131.386 (3)
C4—C51.392 (3)C12—H120.9300
C4—C71.496 (3)C13—N11.335 (3)
C5—C61.380 (3)C13—C141.506 (3)
C6—H60.9300C14—S11.820 (3)
C7—S21.819 (3)C14—H14A0.9700
C7—H7A0.9700C14—H14B0.9700
C7—H7B0.9700C15—S11.817 (3)
C8—C91.505 (3)C15—H15A0.9700
C8—S21.814 (2)C15—H15B0.9700
C8—H8A0.9700
C2—C1—C6116.5 (2)N1—C9—C10122.3 (2)
C2—C1—C15123.3 (2)N1—C9—C8116.2 (2)
C6—C1—C15120.2 (2)C10—C9—C8121.5 (2)
C3—C2—C1122.4 (2)C11—C10—C9118.9 (2)
C3—C2—Br1116.22 (18)C11—C10—H10120.6
C1—C2—Br1121.40 (18)C9—C10—H10120.6
C2—C3—C4120.9 (2)C10—C11—C12119.3 (2)
C2—C3—H3119.6C10—C11—H11120.3
C4—C3—H3119.6C12—C11—H11120.3
C5—C4—C3117.0 (2)C11—C12—C13119.0 (2)
C5—C4—C7124.3 (2)C11—C12—H12120.5
C3—C4—C7118.6 (2)C13—C12—H12120.5
C6—C5—C4121.7 (2)N1—C13—C12122.0 (2)
C6—C5—Br2117.85 (18)N1—C13—C14116.7 (2)
C4—C5—Br2120.44 (19)C12—C13—C14121.3 (2)
C5—C6—C1121.4 (2)C13—C14—S1114.34 (18)
C5—C6—H6119.3C13—C14—H14A108.7
C1—C6—H6119.3S1—C14—H14A108.7
C4—C7—S2115.00 (17)C13—C14—H14B108.7
C4—C7—H7A108.5S1—C14—H14B108.7
S2—C7—H7A108.5H14A—C14—H14B107.6
C4—C7—H7B108.5C1—C15—S1114.02 (17)
S2—C7—H7B108.5C1—C15—H15A108.7
H7A—C7—H7B107.5S1—C15—H15A108.7
C9—C8—S2114.50 (16)C1—C15—H15B108.7
C9—C8—H8A108.6S1—C15—H15B108.7
S2—C8—H8A108.6H15A—C15—H15B107.6
C9—C8—H8B108.6C13—N1—C9118.4 (2)
S2—C8—H8B108.6C15—S1—C14103.75 (12)
H8A—C8—H8B107.6C8—S2—C7103.29 (12)
C6—C1—C2—C32.6 (3)S2—C8—C9—C10−53.5 (3)
C15—C1—C2—C3−175.3 (2)N1—C9—C10—C11−1.6 (4)
C6—C1—C2—Br1−178.55 (17)C8—C9—C10—C11178.4 (2)
C15—C1—C2—Br13.6 (3)C9—C10—C11—C12−0.8 (4)
C1—C2—C3—C4−0.2 (4)C10—C11—C12—C131.5 (4)
Br1—C2—C3—C4−179.17 (17)C11—C12—C13—N10.1 (4)
C2—C3—C4—C5−2.8 (3)C11—C12—C13—C14179.1 (2)
C2—C3—C4—C7175.2 (2)N1—C13—C14—S1−126.8 (2)
C3—C4—C5—C63.5 (3)C12—C13—C14—S154.2 (3)
C7—C4—C5—C6−174.3 (2)C2—C1—C15—S1105.8 (2)
C3—C4—C5—Br2−177.02 (16)C6—C1—C15—S1−71.9 (3)
C7—C4—C5—Br25.1 (3)C12—C13—N1—C9−2.4 (3)
C4—C5—C6—C1−1.2 (4)C14—C13—N1—C9178.6 (2)
Br2—C5—C6—C1179.31 (18)C10—C9—N1—C133.2 (3)
C2—C1—C6—C5−1.8 (3)C8—C9—N1—C13−176.80 (19)
C15—C1—C6—C5176.1 (2)C1—C15—S1—C14−40.3 (2)
C5—C4—C7—S272.8 (3)C13—C14—S1—C1583.7 (2)
C3—C4—C7—S2−105.0 (2)C9—C8—S2—C7−83.4 (2)
S2—C8—C9—N1126.56 (19)C4—C7—S2—C840.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2253).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kay, K. Y. & Baek, Y. G. (1997). Chem. Ber. Recl, 130, 581–584.
  • Scheytza, H., Rademacher, O. & Reibig, H.-U. (1999). Eur. J. Org. Chem.9, 2373–2381.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.
  • Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem 20, 723–730.
  • Yamamoto, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chim. Acta, 258, 89–91.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography