PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1909.
Published online 2010 July 3. doi:  10.1107/S1600536810025468
PMCID: PMC3007400

5-Fluoro-3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzofuran

Abstract

In the title compound, C15H10F2O3S, the 4-fluoro­phenyl ring makes a dihedral angle of 73.20 (4)° with the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.805 (3) Å]. The crystal structure also exhibits weak inter­molecular C—H(...)O and C—H(...)F inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For the structures of related 5-halo-2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1909-scheme1.jpg

Experimental

Crystal data

  • C15H10F2O3S
  • M r = 308.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1909-efi1.jpg
  • a = 7.2799 (9) Å
  • b = 9.5161 (12) Å
  • c = 10.1052 (13) Å
  • α = 89.844 (2)°
  • β = 75.057 (2)°
  • γ = 74.558 (2)°
  • V = 650.32 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 173 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.674, T max = 0.746
  • 5657 measured reflections
  • 2797 independent reflections
  • 2404 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.10
  • 2797 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025468/zl2288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025468/zl2288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Compounds containing a benzofuran skeleton show diverse pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), and antimicrobial (Khan et al., 2005) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 73.20 (4)°. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the furan and the benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.805 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the O═S═O unit (C11—H11···O2i, see Table 1 for symmetry operator and numerical values). The crystal packing (Fig. 2) also exhibits C—H···F hydrogen bonds between the 4-fluorophenyl H atom and the fluorine of 4-fluorophenyl ring (C14—H14···F2ii, Table 1).

Experimental

77% 3-chloroperoxybenzoic acid (381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-fluoro-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (221 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 76%, m.p. 426–427 K; Rf = 0.49 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
π–π, C—H···O, and C—H···F interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denote the ring centroids. [Symmetry codes: (i) - ...

Crystal data

C15H10F2O3SZ = 2
Mr = 308.29F(000) = 316
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2799 (9) ÅCell parameters from 3365 reflections
b = 9.5161 (12) Åθ = 2.9–27.5°
c = 10.1052 (13) ŵ = 0.28 mm1
α = 89.844 (2)°T = 173 K
β = 75.057 (2)°Block, colourless
γ = 74.558 (2)°0.40 × 0.40 × 0.30 mm
V = 650.32 (14) Å3

Data collection

Bruker SMART APEXII CCD diffractometer2797 independent reflections
Radiation source: rotating anode2404 reflections with I > 2σ(I)
graphite multilayerRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −12→12
Tmin = 0.674, Tmax = 0.746l = −12→12
5657 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.092H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0387P)2 + 0.2972P] where P = (Fo2 + 2Fc2)/3
2797 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.53634 (6)0.20772 (5)0.28012 (4)0.02732 (13)
F10.23174 (19)0.31294 (13)0.87101 (11)0.0452 (3)
F2−0.00277 (18)−0.11034 (13)0.17822 (13)0.0504 (3)
O10.20792 (17)0.60640 (12)0.41364 (12)0.0278 (3)
O20.63798 (19)0.12784 (14)0.37331 (13)0.0368 (3)
O30.64674 (18)0.23753 (14)0.14903 (13)0.0370 (3)
C10.3867 (2)0.37201 (17)0.36913 (16)0.0241 (3)
C20.3083 (2)0.39702 (17)0.51670 (16)0.0237 (3)
C30.3194 (3)0.31470 (19)0.63059 (17)0.0282 (4)
H30.38830.21620.62170.034*
C40.2220 (3)0.3886 (2)0.75675 (17)0.0313 (4)
C50.1178 (3)0.5354 (2)0.77703 (18)0.0315 (4)
H50.05690.57870.86540.038*
C60.1057 (2)0.61649 (19)0.66459 (18)0.0295 (4)
H60.03700.71510.67420.035*
C70.2007 (2)0.54383 (17)0.53726 (17)0.0240 (3)
C80.3217 (2)0.50019 (18)0.31296 (17)0.0262 (3)
C90.3471 (3)0.5460 (2)0.17131 (18)0.0368 (4)
H9A0.41970.46290.10770.055*
H9B0.41850.61870.15880.055*
H9C0.21970.58610.15520.055*
C100.3712 (2)0.11336 (17)0.25046 (17)0.0255 (3)
C110.2913 (3)0.03091 (18)0.35213 (18)0.0318 (4)
H110.32310.02660.43570.038*
C120.1637 (3)−0.04468 (19)0.3270 (2)0.0365 (4)
H120.1094−0.10120.39290.044*
C130.1192 (3)−0.03435 (19)0.2028 (2)0.0353 (4)
C140.1938 (3)0.0481 (2)0.10132 (19)0.0349 (4)
H140.15890.05350.01880.042*
C150.3225 (3)0.12286 (19)0.12576 (17)0.0299 (4)
H150.37600.17910.05910.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0230 (2)0.0282 (2)0.0273 (2)−0.00234 (16)−0.00558 (16)−0.00427 (16)
F10.0603 (8)0.0539 (7)0.0261 (5)−0.0203 (6)−0.0153 (5)0.0133 (5)
F20.0482 (7)0.0426 (7)0.0666 (8)−0.0219 (6)−0.0165 (6)−0.0066 (6)
O10.0291 (6)0.0244 (6)0.0282 (6)−0.0056 (5)−0.0066 (5)0.0038 (5)
O20.0312 (7)0.0346 (7)0.0412 (7)0.0030 (5)−0.0159 (6)−0.0035 (6)
O30.0317 (7)0.0438 (8)0.0311 (7)−0.0125 (6)0.0014 (5)−0.0081 (6)
C10.0227 (8)0.0255 (8)0.0235 (8)−0.0062 (6)−0.0058 (6)−0.0006 (6)
C20.0209 (7)0.0253 (8)0.0257 (8)−0.0071 (6)−0.0070 (6)0.0002 (6)
C30.0299 (9)0.0266 (8)0.0287 (9)−0.0060 (7)−0.0107 (7)0.0035 (7)
C40.0338 (9)0.0404 (10)0.0242 (8)−0.0162 (8)−0.0095 (7)0.0077 (7)
C50.0289 (9)0.0405 (10)0.0240 (8)−0.0122 (7)−0.0020 (7)−0.0047 (7)
C60.0245 (8)0.0281 (9)0.0328 (9)−0.0057 (7)−0.0037 (7)−0.0049 (7)
C70.0217 (8)0.0250 (8)0.0260 (8)−0.0078 (6)−0.0061 (6)0.0028 (6)
C80.0246 (8)0.0291 (8)0.0256 (8)−0.0091 (6)−0.0060 (6)0.0017 (6)
C90.0422 (11)0.0401 (10)0.0287 (9)−0.0124 (8)−0.0097 (8)0.0092 (8)
C100.0240 (8)0.0216 (8)0.0271 (8)−0.0009 (6)−0.0058 (6)−0.0023 (6)
C110.0357 (9)0.0254 (8)0.0322 (9)−0.0031 (7)−0.0112 (8)0.0030 (7)
C120.0412 (11)0.0247 (9)0.0415 (10)−0.0093 (8)−0.0072 (8)0.0063 (7)
C130.0318 (9)0.0254 (9)0.0478 (11)−0.0068 (7)−0.0101 (8)−0.0070 (8)
C140.0346 (10)0.0381 (10)0.0314 (9)−0.0072 (8)−0.0106 (8)−0.0053 (8)
C150.0302 (9)0.0302 (9)0.0259 (8)−0.0055 (7)−0.0045 (7)−0.0008 (7)

Geometric parameters (Å, °)

S—O31.4323 (13)C6—C71.380 (2)
S—O21.4381 (13)C6—H60.9300
S—C11.7422 (16)C8—C91.475 (2)
S—C101.7618 (17)C9—H9A0.9600
F1—C41.3665 (19)C9—H9B0.9600
F2—C131.352 (2)C9—H9C0.9600
O1—C81.367 (2)C10—C151.391 (2)
O1—C71.3771 (19)C10—C111.393 (2)
C1—C81.364 (2)C11—C121.387 (3)
C1—C21.448 (2)C11—H110.9300
C2—C71.394 (2)C12—C131.372 (3)
C2—C31.398 (2)C12—H120.9300
C3—C41.377 (2)C13—C141.378 (3)
C3—H30.9300C14—C151.385 (2)
C4—C51.388 (3)C14—H140.9300
C5—C61.380 (2)C15—H150.9300
C5—H50.9300
O3—S—O2119.98 (8)C1—C8—O1110.39 (14)
O3—S—C1109.12 (8)C1—C8—C9134.23 (16)
O2—S—C1106.45 (8)O1—C8—C9115.37 (15)
O3—S—C10107.42 (8)C8—C9—H9A109.5
O2—S—C10107.79 (8)C8—C9—H9B109.5
C1—S—C10105.15 (7)H9A—C9—H9B109.5
C8—O1—C7107.03 (12)C8—C9—H9C109.5
C8—C1—C2107.54 (14)H9A—C9—H9C109.5
C8—C1—S126.42 (13)H9B—C9—H9C109.5
C2—C1—S126.04 (12)C15—C10—C11121.13 (16)
C7—C2—C3119.16 (15)C15—C10—S119.32 (13)
C7—C2—C1104.38 (14)C11—C10—S119.55 (13)
C3—C2—C1136.45 (15)C12—C11—C10119.08 (17)
C4—C3—C2115.79 (16)C12—C11—H11120.5
C4—C3—H3122.1C10—C11—H11120.5
C2—C3—H3122.1C13—C12—C11118.63 (17)
F1—C4—C3117.75 (16)C13—C12—H12120.7
F1—C4—C5117.29 (16)C11—C12—H12120.7
C3—C4—C5124.94 (16)F2—C13—C12118.23 (17)
C6—C5—C4119.29 (16)F2—C13—C14118.35 (17)
C6—C5—H5120.4C12—C13—C14123.42 (17)
C4—C5—H5120.4C13—C14—C15118.08 (17)
C7—C6—C5116.58 (16)C13—C14—H14121.0
C7—C6—H6121.7C15—C14—H14121.0
C5—C6—H6121.7C14—C15—C10119.64 (17)
O1—C7—C6125.09 (15)C14—C15—H15120.2
O1—C7—C2110.65 (14)C10—C15—H15120.2
C6—C7—C2124.23 (16)
O3—S—C1—C823.50 (17)C1—C2—C7—C6−177.47 (15)
O2—S—C1—C8154.33 (15)C2—C1—C8—O10.33 (18)
C10—S—C1—C8−91.47 (16)S—C1—C8—O1−179.79 (11)
O3—S—C1—C2−156.64 (14)C2—C1—C8—C9−179.30 (18)
O2—S—C1—C2−25.81 (16)S—C1—C8—C90.6 (3)
C10—S—C1—C288.39 (15)C7—O1—C8—C10.06 (18)
C8—C1—C2—C7−0.58 (18)C7—O1—C8—C9179.77 (14)
S—C1—C2—C7179.54 (12)O3—S—C10—C15−20.43 (15)
C8—C1—C2—C3−179.31 (18)O2—S—C10—C15−151.02 (13)
S—C1—C2—C30.8 (3)C1—S—C10—C1595.72 (14)
C7—C2—C3—C4−0.7 (2)O3—S—C10—C11159.71 (13)
C1—C2—C3—C4177.87 (17)O2—S—C10—C1129.12 (15)
C2—C3—C4—F1−178.93 (14)C1—S—C10—C11−84.14 (14)
C2—C3—C4—C5−0.4 (3)C15—C10—C11—C121.1 (2)
F1—C4—C5—C6179.38 (15)S—C10—C11—C12−179.07 (13)
C3—C4—C5—C60.9 (3)C10—C11—C12—C13−0.6 (3)
C4—C5—C6—C7−0.1 (2)C11—C12—C13—F2178.91 (15)
C8—O1—C7—C6177.63 (15)C11—C12—C13—C14−0.4 (3)
C8—O1—C7—C2−0.46 (17)F2—C13—C14—C15−178.45 (15)
C5—C6—C7—O1−178.90 (15)C12—C13—C14—C150.8 (3)
C5—C6—C7—C2−1.1 (3)C13—C14—C15—C10−0.3 (3)
C3—C2—C7—O1179.63 (14)C11—C10—C15—C14−0.6 (2)
C1—C2—C7—O10.64 (17)S—C10—C15—C14179.53 (13)
C3—C2—C7—C61.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.453.247 (2)144
C14—H14···F2ii0.932.533.441 (2)168

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2288).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o930. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1190. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography