PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m883–m884.
Published online 2010 July 3. doi:  10.1107/S1600536810025663
PMCID: PMC3007399

Bis{1-[3-(diethyl­ammonio)­propyl­imino­meth­yl]naphthalen-2-olato}nickel(II) dinitrate

Abstract

The asymmetric unit of the title compound, [Ni(C18H24N2O)2](NO3)2, consists of one half of the centrosymmetric nickel(II) complex cation and a nitrate anion. The NiII atom, lying on an inversion center, is four-coordinated by the phenolate O atoms and imine N atoms of two Schiff base ligands, forming a square-planar geometry. The O- and N-donor atoms are mutually trans. In the crystal structure, the nitrate anions are linked to the complex cations by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For background to complexes with Schiff bases, see: Hamaker et al. (2010 [triangle]); Wang et al. (2010 [triangle]); Mirkhani et al. (2010 [triangle]); Liu & Yang (2009 [triangle]); Keypour et al. (2009 [triangle]); Adhikary et al. (2009 [triangle]); Peng et al. (2009 [triangle]). For similar nickel complexes, see: Bhatia et al. (1983 [triangle]); Kamenar et al. (1990 [triangle]); Connor et al. (2003 [triangle]); Lacroix et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m883-scheme1.jpg

Experimental

Crystal data

  • [Ni(C18H24N2O)2](NO3)2
  • M r = 751.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m883-efi1.jpg
  • a = 11.096 (2) Å
  • b = 12.773 (3) Å
  • c = 12.743 (3) Å
  • β = 107.66 (3)°
  • V = 1720.9 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 298 K
  • 0.22 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.875, T max = 0.885
  • 14203 measured reflections
  • 3689 independent reflections
  • 2616 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.209
  • S = 1.05
  • 3689 reflections
  • 237 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.12 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025663/sj5031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025663/sj5031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

supplementary crystallographic information

Comment

Schiff bases are known to be versatile ligands in coordination chemistry (Hamaker et al., 2010; Wang et al., 2010; Mirkhani et al., 2010; Liu & Yang, 2009). A large number of complexes with Schiff bases have been reported because of their interesting structures and potential applications (Keypour et al., 2009; Adhikary et al., 2009; Peng et al., 2009). We report here the crystal structure of the title new nickel complex with the Schiff base ligand 1-[(3-diethylaminopropylimino)methyl]naphthalen-2-ol.

The compound consists of a centrosymmetric mononuclear nickel complex cation and two nitrate anions (Fig. 1). The Ni atom, lying on the inversion center, is four-coordinated by two phenolate O atoms and two imine N atoms from two Schiff base ligands, forming a square planar geometry. The bond lengths (Table 1) around the Ni atom are comparable to those observed in similar nickel complexes (Bhatia et al., 1983; Kamenar et al., 1990; Connor et al., 2003; Lacroix et al., 2004).

In the crystal structure, the nitrate anions are linked to the complex cations by intermolecular N2—H2···O2 and N2—H2···O3 hydrogen bonds.

Experimental

2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) and N,N-diethylpropane-1,3-diamine (0.1 mmol, 13.0 mg) were mixed and stirred in methanol (10 ml) for 30 min. Then a methanol solution (5 ml) of nickel nitrate (0.1 mmol, 29.1 mg) was added to the mixture. The final mixture was stirred for another 30 min to give a red solution. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution at room temperature.

Refinement

H2 atom was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with Uiso(H) fixed at 0.08 Å2. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmetyl). Rotating group models were used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabeled atoms are related to labeled atoms by the symmetry operation 2 - x, - y, - z.
Fig. 2.
Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

[Ni(C18H24N2O)2](NO3)2F(000) = 796
Mr = 751.51Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1931 reflections
a = 11.096 (2) Åθ = 2.3–24.5°
b = 12.773 (3) ŵ = 0.63 mm1
c = 12.743 (3) ÅT = 298 K
β = 107.66 (3)°Block, red
V = 1720.9 (6) Å30.22 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer3689 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
graphiteRint = 0.055
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −14→14
Tmin = 0.875, Tmax = 0.885k = −16→16
14203 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.1045P)2 + 2.3396P] where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.12 e Å3
10 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.00000.00000.0311 (3)
O10.9986 (3)0.1074 (2)0.1014 (3)0.0408 (7)
O20.5354 (7)0.2034 (9)0.9557 (8)0.225 (5)
O30.4032 (8)0.1988 (7)0.8277 (7)0.192 (4)
O40.3971 (5)0.2888 (5)0.9549 (6)0.136 (3)
N10.8796 (3)−0.0671 (3)0.0330 (3)0.0345 (8)
N20.5785 (3)0.0578 (3)−0.2176 (4)0.0545 (11)
N30.4423 (5)0.2296 (4)0.9150 (5)0.0721 (14)
C10.9022 (4)0.0217 (3)0.2196 (4)0.0352 (9)
C20.9667 (4)0.1028 (3)0.1957 (4)0.0359 (9)
C30.9970 (4)0.1886 (4)0.2757 (4)0.0441 (11)
H31.03840.24660.25890.053*
C40.9685 (4)0.1902 (4)0.3755 (4)0.0473 (11)
H40.99010.24840.42120.057*
C50.9090 (4)0.1069 (4)0.4066 (4)0.0421 (10)
C60.8845 (4)0.1068 (5)0.5149 (4)0.0547 (13)
H60.90790.16430.56140.066*
C70.8303 (5)0.0261 (5)0.5452 (5)0.0591 (15)
H70.81410.02440.61260.071*
C80.7973 (4)−0.0588 (5)0.4694 (4)0.0562 (14)
H80.7590−0.11690.48980.067*
C90.8189 (4)−0.0615 (4)0.3639 (4)0.0491 (12)
H90.7943−0.11970.31870.059*
C100.8757 (4)0.0217 (3)0.3293 (4)0.0394 (10)
C110.8539 (4)−0.0524 (3)0.1298 (4)0.0371 (10)
H110.7939−0.09850.14070.045*
C120.8045 (4)−0.1365 (3)−0.0545 (4)0.0413 (10)
H12A0.7442−0.1746−0.02760.050*
H12B0.8601−0.1871−0.07270.050*
C130.7332 (4)−0.0759 (4)−0.1585 (4)0.0456 (11)
H13A0.7917−0.0425−0.19110.055*
H13B0.6779−0.1220−0.21250.055*
C140.6604 (4)0.0017 (4)−0.1200 (5)0.0541 (13)
H14A0.71680.0506−0.07060.065*
H14B0.6090−0.0323−0.08050.065*
C150.4901 (5)−0.0100 (5)−0.2939 (8)0.095 (3)
H15A0.5335−0.0566−0.33060.114*
H15B0.42800.0304−0.34910.114*
C160.4293 (7)−0.0697 (6)−0.2234 (11)0.162 (5)
H16A0.4811−0.1288−0.19180.243*
H16B0.3476−0.0937−0.26730.243*
H16C0.4201−0.0252−0.16560.243*
C170.6274 (5)0.1202 (5)−0.2952 (6)0.083 (2)
H17A0.66330.0743−0.33850.100*
H17B0.55940.1602−0.34490.100*
C180.7222 (6)0.1889 (6)−0.2297 (10)0.135 (4)
H18A0.69790.2124−0.16740.203*
H18B0.73110.2482−0.27310.203*
H18C0.80140.1523−0.20450.203*
H20.548 (6)0.100 (4)−0.176 (4)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0217 (4)0.0292 (4)0.0426 (5)−0.0016 (3)0.0100 (3)0.0006 (3)
O10.0354 (15)0.0351 (16)0.056 (2)−0.0065 (12)0.0206 (14)−0.0047 (14)
O20.122 (6)0.287 (12)0.234 (9)0.107 (7)0.006 (6)−0.103 (9)
O30.162 (6)0.188 (7)0.191 (6)0.051 (5)−0.001 (5)−0.087 (6)
O40.086 (4)0.132 (5)0.223 (7)0.024 (4)0.093 (4)−0.033 (5)
N10.0218 (15)0.0313 (18)0.047 (2)−0.0011 (12)0.0060 (14)−0.0014 (15)
N20.0246 (17)0.055 (3)0.080 (3)0.0071 (17)0.0115 (18)−0.009 (2)
N30.046 (3)0.081 (4)0.096 (4)0.009 (3)0.032 (3)−0.010 (3)
C10.0223 (17)0.036 (2)0.046 (2)0.0032 (15)0.0096 (16)0.0034 (17)
C20.0235 (17)0.038 (2)0.046 (2)0.0045 (15)0.0097 (17)0.0011 (18)
C30.035 (2)0.041 (3)0.056 (3)−0.0073 (18)0.013 (2)−0.004 (2)
C40.033 (2)0.052 (3)0.053 (3)0.0012 (19)0.007 (2)−0.014 (2)
C50.0236 (18)0.054 (3)0.048 (3)0.0068 (18)0.0093 (18)0.000 (2)
C60.039 (2)0.072 (4)0.053 (3)0.010 (2)0.015 (2)−0.007 (3)
C70.041 (3)0.093 (4)0.051 (3)0.017 (3)0.025 (2)0.008 (3)
C80.030 (2)0.078 (4)0.065 (3)0.006 (2)0.020 (2)0.021 (3)
C90.029 (2)0.057 (3)0.063 (3)0.003 (2)0.018 (2)0.008 (2)
C100.0194 (17)0.049 (3)0.049 (3)0.0084 (16)0.0103 (17)0.0050 (19)
C110.0235 (18)0.035 (2)0.052 (3)0.0008 (16)0.0106 (17)0.0072 (19)
C120.0222 (18)0.038 (2)0.062 (3)−0.0043 (16)0.0096 (18)−0.011 (2)
C130.0254 (19)0.049 (3)0.058 (3)0.0024 (18)0.0058 (19)−0.011 (2)
C140.030 (2)0.067 (3)0.065 (3)0.014 (2)0.013 (2)−0.004 (3)
C150.031 (3)0.070 (4)0.156 (8)0.007 (3)−0.015 (4)−0.016 (4)
C160.043 (4)0.079 (5)0.338 (16)−0.010 (4)0.019 (6)0.054 (8)
C170.045 (3)0.081 (4)0.126 (6)0.018 (3)0.029 (3)0.032 (4)
C180.044 (4)0.083 (5)0.270 (13)−0.003 (3)0.035 (5)0.015 (7)

Geometric parameters (Å, °)

Ni1—N1i1.743 (3)C7—H70.9300
Ni1—N11.743 (3)C8—C91.437 (7)
Ni1—O11.888 (3)C8—H80.9300
Ni1—O1i1.888 (3)C9—C101.374 (6)
O1—C21.353 (5)C9—H90.9300
O2—N31.059 (7)C11—H110.9300
O3—N31.135 (8)C12—C131.531 (6)
O4—N31.111 (6)C12—H12A0.9700
N1—C111.360 (5)C12—H12B0.9700
N1—C121.469 (5)C13—C141.454 (6)
N2—C151.442 (7)C13—H13A0.9700
N2—C141.483 (7)C13—H13B0.9700
N2—C171.495 (8)C14—H14A0.9700
N2—H20.89 (6)C14—H14B0.9700
C1—C21.345 (6)C15—C161.487 (12)
C1—C111.457 (6)C15—H15A0.9700
C1—C101.513 (6)C15—H15B0.9700
C2—C31.465 (6)C16—H16A0.9600
C3—C41.400 (7)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.373 (7)C17—C181.428 (10)
C4—H40.9300C17—H17A0.9700
C5—C101.439 (6)C17—H17B0.9700
C5—C61.484 (7)C18—H18A0.9600
C6—C71.310 (8)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.424 (8)
N1i—Ni1—N1180.0 (3)C9—C10—C1122.2 (4)
N1i—Ni1—O188.51 (14)C5—C10—C1123.4 (4)
N1—Ni1—O191.49 (14)N1—C11—C1132.3 (4)
N1i—Ni1—O1i91.49 (14)N1—C11—H11113.8
N1—Ni1—O1i88.51 (14)C1—C11—H11113.8
O1—Ni1—O1i180.0 (2)N1—C12—C13112.1 (4)
C2—O1—Ni1129.4 (3)N1—C12—H12A109.2
C11—N1—C12123.0 (3)C13—C12—H12A109.2
C11—N1—Ni1122.5 (3)N1—C12—H12B109.2
C12—N1—Ni1114.4 (3)C13—C12—H12B109.2
C15—N2—C14113.2 (5)H12A—C12—H12B107.9
C15—N2—C17100.5 (6)C14—C13—C12104.3 (4)
C14—N2—C17124.0 (4)C14—C13—H13A110.9
C15—N2—H2117 (4)C12—C13—H13A110.9
C14—N2—H293 (4)C14—C13—H13B110.9
C17—N2—H2110 (4)C12—C13—H13B110.9
O2—N3—O4120.0 (8)H13A—C13—H13B108.9
O2—N3—O3113.3 (7)C13—C14—N2108.0 (4)
O4—N3—O3126.3 (7)C13—C14—H14A110.1
C2—C1—C11114.7 (4)N2—C14—H14A110.1
C2—C1—C10118.4 (4)C13—C14—H14B110.1
C11—C1—C10126.7 (4)N2—C14—H14B110.1
C1—C2—O1122.3 (4)H14A—C14—H14B108.4
C1—C2—C3116.4 (4)N2—C15—C16103.9 (7)
O1—C2—C3121.3 (4)N2—C15—H15A111.0
C4—C3—C2125.2 (4)C16—C15—H15A111.0
C4—C3—H3117.4N2—C15—H15B111.0
C2—C3—H3117.4C16—C15—H15B111.0
C5—C4—C3120.8 (4)H15A—C15—H15B109.0
C5—C4—H4119.6C15—C16—H16A109.5
C3—C4—H4119.6C15—C16—H16B109.5
C4—C5—C10115.7 (4)H16A—C16—H16B109.5
C4—C5—C6120.6 (5)C15—C16—H16C109.5
C10—C5—C6123.7 (4)H16A—C16—H16C109.5
C7—C6—C5120.3 (5)H16B—C16—H16C109.5
C7—C6—H6119.8C18—C17—N2107.0 (7)
C5—C6—H6119.8C18—C17—H17A110.3
C6—C7—C8116.5 (5)N2—C17—H17A110.3
C6—C7—H7121.8C18—C17—H17B110.3
C8—C7—H7121.8N2—C17—H17B110.3
C7—C8—C9124.8 (5)H17A—C17—H17B108.6
C7—C8—H8117.6C17—C18—H18A109.5
C9—C8—H8117.6C17—C18—H18B109.5
C10—C9—C8120.4 (5)H18A—C18—H18B109.5
C10—C9—H9119.8C17—C18—H18C109.5
C8—C9—H9119.8H18A—C18—H18C109.5
C9—C10—C5114.3 (4)H18B—C18—H18C109.5

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O3ii0.89 (6)2.05 (4)2.836 (8)146 (6)
N2—H2···O2ii0.89 (6)2.17 (5)3.033 (9)162 (6)

Symmetry codes: (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5031).

References

  • Adhikary, C., Sen, R., Bocelli, G., Cantoni, A., Solzi, M., Chaudhuri, S. & Koner, S. (2009). J. Coord. Chem.62, 3573–3582.
  • Bhatia, S. C., Syal, V. K., Kashyap, R. P., Jain, P. C. & Brown, C. J. (1983). Acta Cryst. C39, 199–200.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Connor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. pp. 2272–2273. [PubMed]
  • Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr.40, 34–39.
  • Kamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627–1631.
  • Keypour, H., Azadbakht, R., Rudbari, H. A., Heydarinekoo, A. & Khavasi, H. (2009). Transition Met. Chem.34, 835–839.
  • Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.
  • Liu, Y.-C. & Yang, Z.-Y. (2009). Eur. J. Med. Chem.44, 5080–5089. [PubMed]
  • Mirkhani, V., Kia, R., Milic, D., Vartooni, A. R. & Matkovic-Calogovic, D. (2010). Transition Met. Chem.35, 81–87.
  • Peng, S.-J., Hou, H.-Y. & Zhou, C.-S. (2009). Synth. React. Inorg. Met. Org. Nano-Met. Chem.39, 462–466.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, W., Zhang, F. X., Li, J. & Hu, W. B. (2010). Russ. J. Coord. Chem.36, 33–36.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography