PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1993.
Published online 2010 July 10. doi:  10.1107/S1600536810026760
PMCID: PMC3007398

5,8-Dibromo-14,15,17,18-tetra­methyl-2,11-dithia­[3.3]paracyclo­phane

Abstract

In the title mol­ecule [systematic name: 12,15-dibromo-52,53,55,56-tetramethyl-3,7-dithia-1,5(1,4)-dibenzenacyclooctaphane], C20H22Br2S2, the distance between the centroids of the two benzene rings is 3.326 (4) Å, and their mean planes are almost parallel, forming a dihedral angle of 1.05 (7)°. The crystal packing exhibits no inter­molecular contacts shorter than the sum of van der Waals radii.

Related literature

For the preparation of the title compound, see: Wang et al. (2006 [triangle]). For the crystal structures of related compounds, see: Sun et al. (2008 [triangle]); Clément et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1993-scheme1.jpg

Experimental

Crystal data

  • C20H22Br2S2
  • M r = 486.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1993-efi1.jpg
  • a = 15.298 (3) Å
  • b = 12.340 (2) Å
  • c = 10.0160 (18) Å
  • β = 91.864 (3)°
  • V = 1889.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.51 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 12364 measured reflections
  • 3922 independent reflections
  • 2690 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.099
  • S = 0.94
  • 3922 reflections
  • 221 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026760/cv2738sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026760/cv2738Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xianggao Meng for the data collection.

supplementary crystallographic information

Comment

As a contribution to a structural studies of paracyclophane compounds (Sun et al., 2008; Clément et al., 2009), we present here the crystal structure of the title compound (I).

In (I) (Fig. 1), the distance between the centroids of two benzene rings is 3.326 (4) Å, and their mean planes are almost parallel forming a dihedral angle of 1.05 (7)°. The crystal packing exhibits no intermolecular contacts shorter than the sum of van der Waals radii

Experimental

The title compound has been prepared following the known procedure (Wang et al., 2006). A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene and 1,4-dibromomethyl-2,3,5,6-tetramethylbenzene in degassed THF(500 mL) was added dropwise under N2 over 12 h to a refluxing solution of potassium carbonate(5 equiv) in EtOH(1.2L). After an additional 2 h at the reflux temperature, the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2(300 mL) and water(300 mL). The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers was dried over Na2SO4,then solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether(1:1,v/v) as eluent. The product was further purified by recrystallization from toluene.

Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) = 1.2Ueq(C) for methylene, and (C—H =0.96 Å) and Uiso(H) = 1.5Ueq(C) for methyl.

Figures

Fig. 1.
A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C20H22Br2S2F(000) = 976
Mr = 486.32Dx = 1.709 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3874 reflections
a = 15.298 (3) Åθ = 2.6–23.9°
b = 12.340 (2) ŵ = 4.51 mm1
c = 10.0160 (18) ÅT = 298 K
β = 91.864 (3)°Block, colourless
V = 1889.8 (6) Å30.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer2690 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
graphiteθmax = 26.5°, θmin = 2.1°
phi and ω scansh = −12→19
12364 measured reflectionsk = −15→14
3922 independent reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.94w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.013
221 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.63291 (3)−0.24847 (3)0.69722 (4)0.06216 (15)
Br20.86653 (3)0.03415 (3)1.12714 (4)0.06978 (17)
C10.7941 (2)−0.1625 (2)0.8090 (3)0.0407 (8)
C20.7035 (2)−0.1602 (2)0.8134 (3)0.0398 (7)
C30.6607 (2)−0.0921 (3)0.8980 (3)0.0445 (8)
H30.5998−0.09110.89610.053*
C40.7068 (2)−0.0249 (2)0.9864 (3)0.0436 (8)
C50.7961 (2)−0.0389 (2)0.9945 (3)0.0434 (8)
C60.8387 (2)−0.1043 (2)0.9067 (3)0.0448 (8)
H60.8994−0.10940.91340.054*
C70.8438 (3)−0.2189 (3)0.7015 (4)0.0579 (10)
H7A0.8025−0.24250.63200.069*
H7B0.8713−0.28320.73960.069*
C80.8677 (2)−0.0337 (3)0.5289 (3)0.0493 (9)
H8A0.91040.01170.48630.059*
H8B0.8339−0.07000.45850.059*
C90.8064 (2)0.0394 (2)0.6037 (3)0.0336 (7)
C100.7159 (2)0.0343 (2)0.5758 (3)0.0351 (7)
C110.65953 (19)0.0939 (2)0.6546 (3)0.0344 (7)
C120.69283 (19)0.1594 (2)0.7578 (3)0.0339 (7)
C130.7842 (2)0.1727 (2)0.7759 (3)0.0340 (7)
C140.84008 (19)0.1132 (2)0.6990 (3)0.0351 (7)
C150.6794 (2)−0.0317 (3)0.4589 (3)0.0533 (9)
H15A0.6190−0.01320.44230.080*
H15B0.6840−0.10750.47960.080*
H15C0.7119−0.01620.38080.080*
C160.5615 (2)0.0846 (3)0.6279 (4)0.0524 (9)
H16A0.54250.01290.65030.079*
H16B0.54820.09840.53510.079*
H16C0.53180.13660.68150.079*
C170.9379 (2)0.1285 (3)0.7171 (4)0.0555 (9)
H17A0.95180.20410.71090.083*
H17B0.96710.08940.64870.083*
H17C0.95690.10160.80320.083*
C180.8205 (3)0.2505 (3)0.8816 (4)0.0532 (9)
H18A0.88320.24630.88500.080*
H18B0.79860.23130.96710.080*
H18C0.80280.32310.85930.080*
C190.6313 (2)0.2168 (3)0.8503 (4)0.0478 (8)
H19A0.58830.25610.79590.057*
H19B0.66470.26970.90210.057*
C200.6574 (3)0.0609 (3)1.0634 (4)0.0615 (10)
H20A0.69900.11411.09780.074*
H20B0.63100.02651.13930.074*
S10.92690 (6)−0.13702 (8)0.62621 (10)0.0536 (2)
S20.57294 (6)0.13011 (8)0.96634 (10)0.0572 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0655 (3)0.0568 (3)0.0643 (3)−0.01722 (19)0.0036 (2)−0.00873 (18)
Br20.0857 (3)0.0680 (3)0.0542 (2)0.0013 (2)−0.0199 (2)−0.00657 (19)
C10.046 (2)0.0305 (16)0.0458 (18)0.0047 (15)0.0098 (15)0.0078 (14)
C20.049 (2)0.0323 (16)0.0383 (16)−0.0038 (15)0.0036 (14)0.0041 (13)
C30.042 (2)0.046 (2)0.0456 (18)−0.0015 (16)0.0131 (15)0.0034 (15)
C40.057 (2)0.0401 (18)0.0345 (16)0.0056 (16)0.0110 (15)0.0066 (14)
C50.056 (2)0.0407 (18)0.0332 (16)−0.0002 (16)−0.0047 (15)0.0063 (14)
C60.0415 (19)0.0441 (19)0.0489 (19)0.0059 (15)0.0015 (16)0.0058 (16)
C70.059 (2)0.0427 (19)0.073 (3)0.0030 (17)0.021 (2)−0.0133 (18)
C80.050 (2)0.055 (2)0.0434 (19)0.0080 (17)0.0094 (16)0.0000 (15)
C90.0344 (18)0.0372 (16)0.0298 (14)0.0046 (13)0.0075 (12)0.0063 (12)
C100.0409 (19)0.0344 (16)0.0301 (14)−0.0028 (14)−0.0002 (13)0.0044 (12)
C110.0294 (17)0.0383 (17)0.0354 (15)−0.0014 (13)0.0021 (13)0.0062 (13)
C120.0345 (17)0.0303 (15)0.0371 (15)0.0023 (13)0.0063 (13)0.0041 (12)
C130.0367 (18)0.0319 (15)0.0333 (15)−0.0031 (14)−0.0006 (13)0.0025 (12)
C140.0275 (16)0.0396 (17)0.0380 (16)−0.0027 (13)0.0004 (13)0.0107 (13)
C150.052 (2)0.057 (2)0.050 (2)−0.0062 (18)−0.0023 (17)−0.0121 (17)
C160.0309 (19)0.064 (2)0.062 (2)−0.0022 (17)−0.0018 (16)−0.0051 (18)
C170.0326 (19)0.065 (2)0.068 (2)−0.0055 (17)−0.0016 (17)−0.0039 (19)
C180.058 (2)0.052 (2)0.0492 (19)−0.0119 (17)−0.0032 (17)−0.0060 (17)
C190.046 (2)0.0409 (18)0.057 (2)0.0046 (16)0.0119 (17)−0.0045 (16)
C200.080 (3)0.061 (2)0.044 (2)0.009 (2)0.0095 (19)−0.0028 (17)
S10.0425 (5)0.0564 (6)0.0626 (6)0.0154 (4)0.0150 (4)0.0023 (4)
S20.0486 (6)0.0601 (6)0.0643 (6)0.0107 (5)0.0255 (5)0.0004 (5)

Geometric parameters (Å, °)

Br1—C21.904 (3)C11—C161.519 (4)
Br2—C51.909 (3)C12—C131.413 (4)
C1—C61.378 (4)C12—C191.517 (4)
C1—C21.388 (4)C13—C141.381 (4)
C1—C71.509 (5)C13—C181.521 (4)
C2—C31.374 (4)C14—C171.514 (4)
C3—C41.389 (5)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.377 (5)C15—H15C0.9600
C4—C201.524 (5)C16—H16A0.9600
C5—C61.373 (5)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—S11.808 (4)C17—H17A0.9600
C7—H7A0.9700C17—H17B0.9600
C7—H7B0.9700C17—H17C0.9600
C8—C91.516 (4)C18—H18A0.9600
C8—S11.826 (3)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700C19—S21.833 (4)
C9—C141.405 (4)C19—H19A0.9700
C9—C101.405 (4)C19—H19B0.9700
C10—C111.397 (4)C20—S21.807 (4)
C10—C151.518 (4)C20—H20A0.9700
C11—C121.396 (4)C20—H20B0.9700
C6—C1—C2116.1 (3)C14—C13—C18120.3 (3)
C6—C1—C7119.9 (3)C12—C13—C18120.0 (3)
C2—C1—C7124.0 (3)C13—C14—C9120.3 (3)
C3—C2—C1121.9 (3)C13—C14—C17119.7 (3)
C3—C2—Br1117.0 (3)C9—C14—C17120.1 (3)
C1—C2—Br1121.0 (2)C10—C15—H15A109.5
C2—C3—C4121.0 (3)C10—C15—H15B109.5
C2—C3—H3119.5H15A—C15—H15B109.5
C4—C3—H3119.5C10—C15—H15C109.5
C5—C4—C3116.4 (3)H15A—C15—H15C109.5
C5—C4—C20124.4 (3)H15B—C15—H15C109.5
C3—C4—C20119.2 (3)C11—C16—H16A109.5
C6—C5—C4121.8 (3)C11—C16—H16B109.5
C6—C5—Br2117.0 (3)H16A—C16—H16B109.5
C4—C5—Br2121.2 (3)C11—C16—H16C109.5
C5—C6—C1121.8 (3)H16A—C16—H16C109.5
C5—C6—H6119.1H16B—C16—H16C109.5
C1—C6—H6119.1C14—C17—H17A109.5
C1—C7—S1114.7 (2)C14—C17—H17B109.5
C1—C7—H7A108.6H17A—C17—H17B109.5
S1—C7—H7A108.6C14—C17—H17C109.5
C1—C7—H7B108.6H17A—C17—H17C109.5
S1—C7—H7B108.6H17B—C17—H17C109.5
H7A—C7—H7B107.6C13—C18—H18A109.5
C9—C8—S1117.1 (2)C13—C18—H18B109.5
C9—C8—H8A108.0H18A—C18—H18B109.5
S1—C8—H8A108.0C13—C18—H18C109.5
C9—C8—H8B108.0H18A—C18—H18C109.5
S1—C8—H8B108.0H18B—C18—H18C109.5
H8A—C8—H8B107.3C12—C19—S2116.1 (2)
C14—C9—C10120.1 (3)C12—C19—H19A108.3
C14—C9—C8120.2 (3)S2—C19—H19A108.3
C10—C9—C8119.8 (3)C12—C19—H19B108.3
C11—C10—C9119.1 (3)S2—C19—H19B108.3
C11—C10—C15120.0 (3)H19A—C19—H19B107.4
C9—C10—C15120.9 (3)C4—C20—S2114.4 (2)
C12—C11—C10120.4 (3)C4—C20—H20A108.7
C12—C11—C16120.5 (3)S2—C20—H20A108.7
C10—C11—C16119.0 (3)C4—C20—H20B108.7
C11—C12—C13119.8 (3)S2—C20—H20B108.7
C11—C12—C19120.2 (3)H20A—C20—H20B107.6
C13—C12—C19119.9 (3)C7—S1—C8105.64 (18)
C14—C13—C12119.7 (3)C20—S2—C19105.24 (19)
C6—C1—C2—C38.7 (4)C9—C10—C11—C16−177.5 (3)
C7—C1—C2—C3−167.8 (3)C15—C10—C11—C164.6 (4)
C6—C1—C2—Br1−173.4 (2)C10—C11—C12—C135.2 (4)
C7—C1—C2—Br110.1 (4)C16—C11—C12—C13−176.0 (3)
C1—C2—C3—C4−2.1 (5)C10—C11—C12—C19−175.0 (3)
Br1—C2—C3—C4179.9 (2)C16—C11—C12—C193.8 (4)
C2—C3—C4—C5−6.9 (5)C11—C12—C13—C14−5.7 (4)
C2—C3—C4—C20171.0 (3)C19—C12—C13—C14174.5 (3)
C3—C4—C5—C69.1 (5)C11—C12—C13—C18175.4 (3)
C20—C4—C5—C6−168.6 (3)C19—C12—C13—C18−4.4 (4)
C3—C4—C5—Br2−171.9 (2)C12—C13—C14—C9−0.4 (4)
C20—C4—C5—Br210.3 (4)C18—C13—C14—C9178.5 (3)
C4—C5—C6—C1−2.5 (5)C12—C13—C14—C17179.2 (3)
Br2—C5—C6—C1178.5 (2)C18—C13—C14—C17−2.0 (4)
C2—C1—C6—C5−6.5 (4)C10—C9—C14—C137.0 (4)
C7—C1—C6—C5170.2 (3)C8—C9—C14—C13−174.0 (3)
C6—C1—C7—S1−46.5 (4)C10—C9—C14—C17−172.5 (3)
C2—C1—C7—S1130.0 (3)C8—C9—C14—C176.4 (4)
S1—C8—C9—C1466.8 (4)C11—C12—C19—S270.2 (3)
S1—C8—C9—C10−114.2 (3)C13—C12—C19—S2−110.0 (3)
C14—C9—C10—C11−7.5 (4)C5—C4—C20—S2136.9 (3)
C8—C9—C10—C11173.5 (3)C3—C4—C20—S2−40.8 (4)
C14—C9—C10—C15170.4 (3)C1—C7—S1—C8−69.5 (3)
C8—C9—C10—C15−8.5 (4)C9—C8—S1—C758.3 (3)
C9—C10—C11—C121.4 (4)C4—C20—S2—C19−71.1 (3)
C15—C10—C11—C12−176.5 (3)C12—C19—S2—C2058.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2738).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin,USA.
  • Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Sun, J., Huo, Y., Wu, R., Li, J. & Ma, Y. (2008). Acta Cryst. E64, o650. [PMC free article] [PubMed]
  • Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography