PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m981–m982.
Published online 2010 July 21. doi:  10.1107/S1600536810027613
PMCID: PMC3007395

Bis(μ-5-carboxyl­atotetra­zolido)bis­[aqua­(2,2′-bipyrid­yl)cadmium(II)]

Abstract

In the title dinuclear CdII complex, [Cd2(C2N4O2)2(C10H8N2)2(H2O)2], each Cd atom is in a slightly distorted octa­hedral coordination by two N atoms and one O atom of two 1H-tetra­zole-5-carboxyl­ate (TZC) ligands, two N atoms of a 2,2′-bipyridyl ligand and one water O atom. The TZC ligand acts in a tridentate N,O-chelating N-bridging mode to two symmetry-equivalent CdII atoms. The complex reveals mol­ecular C i symmetry. Extensive O—H(...)O hydrogen bonding plays an important role in the crystal packing.

Related literature

For the structural topologies and varied properties such as mol­ecular magnetism, mol­ecular absorption, catalysis, non-linear optics and luminescence of coordination complexes with tetra­zolate-based ligands, see: Zhao et al. (2008 [triangle]); Cheng et al. (2007 [triangle]). For related structures, see: Wu et al. (2009 [triangle]; 2010 [triangle]) For related literature on 1H-tetrazoles, see: Jia et al. (2009 [triangle]); Zhong et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m981-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C2N4O2)2(C10H8N2)2(H2O)2]
  • M r = 797.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m981-efi1.jpg
  • a = 7.5218 (13) Å
  • b = 9.6372 (16) Å
  • c = 9.7335 (16) Å
  • α = 75.628 (3)°
  • β = 89.686 (3)°
  • γ = 74.461 (2)°
  • V = 657.10 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 173 K
  • 0.28 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.650, T max = 0.774
  • 3760 measured reflections
  • 2168 independent reflections
  • 1930 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.066
  • S = 1.11
  • 2168 reflections
  • 207 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810027613/kp2269sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027613/kp2269Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Coordination complexes with tetrazolate-based ligands have been the subject of intense research efforts in recent years, owing to their enormous variety of interesting structural topologies, and wide physical properties such as molecular magnetism, molecular absorption, catalysis, non-linear optics, and luminescence (Zhao, 2008; Cheng et al., 2007). The crystal structures and properties of metal complexes based on tetrazolate-5-carboxylato ligand have been reported in several papers (Wu et al., 2009; Wu et al., 2010) in recent years. Herein, we report the synthesis and crystal structure of its cadmium(II) complex.

In the title compound (I), the asymmetric unit comprises a half of the molecule (Fig. 1) and an inversion symmetry generates a dinuclear complex. The bond lengths (Table 1) and angles around Cd1 atom suggests a slightly distorted octahedral geometry. The TZC ligand acts as a tridentate linker to chelate the Cd atom and bridges the other Cd atom in a µ2-N2:O1,N1 coordination mode (Fig. 1). Two Cd atoms are bridged by tetrazolate groups from two symmetry-related TZC ligands to form one six-membered ring (Cd1—N1—N2—Cd1A—N1A—N2A). There are O–H···O, C–H···N, C–H···O intermolecular hydrogen bonds (Table 2). The molecules are held together by intermolecular hydrogen bonding interactions, forming a three-dimensional network (Fig. 2).

Experimental

A mixture of Cd(NO3)2 4H2O (0.5 mmol), TZC (0.5 mmol), KOH (0.5 mmol) and 2,2'-bipy (0.5 mmol) in aqueous solution (15 ml) was sealed in a 25 ml Teflon-lined stainless steel vessel under autogenous pressure and heated at 383 K for 3 days, and then slowly cooled to room temperature. Colourless crystals suitable for X-ray analyses were obtained, washed with distilled water and dried in air. Yield: 50% (based on Cd).

Refinement

The H atoms of the 2,2'-bipy were placed in geometrically idealized positions with C—H distances of 0.93 Å, and were refined isotropic using a riding model with Uiso(H) = 1.2Ueq(C). The H atoms of the coordinated water molecules were assigned in the difference Fourier maps and refined isotropically.

Figures

Fig. 1.
The structure of (I), showing 30% probability displacement ellipsoids and the atom-labeling scheme. Symmetry code: (A) -x + 1, -y, -z + 1.
Fig. 2.
Three-dimensional network of hydrogen bonds.

Crystal data

[Cd2(C2N4O2)2(C10H8N2)2(H2O)2]Z = 1
Mr = 797.32F(000) = 392
Triclinic, P1Dx = 2.015 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5218 (13) ÅCell parameters from 2926 reflections
b = 9.6372 (16) Åθ = 2.7–27.0°
c = 9.7335 (16) ŵ = 1.69 mm1
α = 75.628 (3)°T = 173 K
β = 89.686 (3)°Block, colourless
γ = 74.461 (2)°0.28 × 0.22 × 0.16 mm
V = 657.10 (19) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2268 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
graphiteRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −8→8
Tmin = 0.650, Tmax = 0.774k = −11→11
3760 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0331P)2 + 0.4626P] where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.70 e Å3
3 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.40965 (3)0.23221 (3)0.36929 (3)0.01494 (11)
O10.6019 (3)0.3838 (3)0.3780 (3)0.0205 (6)
O20.8715 (3)0.3914 (3)0.4648 (3)0.0212 (6)
O30.2432 (3)0.3036 (3)0.5528 (3)0.0199 (6)
N10.6687 (4)0.0890 (3)0.5152 (3)0.0145 (6)
N20.7360 (4)−0.0460 (3)0.6050 (3)0.0150 (6)
N30.8896 (4)−0.0486 (4)0.6726 (3)0.0187 (7)
N40.9234 (4)0.0835 (3)0.6289 (3)0.0181 (7)
N90.2429 (4)0.4286 (3)0.1938 (3)0.0151 (6)
N100.5150 (4)0.1995 (3)0.1484 (3)0.0167 (7)
C10.7862 (5)0.1654 (4)0.5330 (4)0.0142 (8)
C20.7527 (5)0.3265 (4)0.4521 (4)0.0174 (8)
C30.1195 (5)0.5462 (4)0.2218 (4)0.0190 (8)
H30.06960.52300.31730.023*
C40.0345 (5)0.6728 (4)0.1188 (4)0.0230 (9)
H4−0.05260.75320.14320.028*
C50.0777 (5)0.6817 (4)−0.0214 (4)0.0232 (9)
H50.01960.7672−0.09510.028*
C60.2080 (5)0.5619 (4)−0.0508 (4)0.0189 (8)
H60.24270.5655−0.14540.023*
C70.2875 (5)0.4368 (4)0.0589 (4)0.0156 (8)
C80.4293 (5)0.3049 (4)0.0329 (4)0.0157 (8)
C90.4693 (5)0.2928 (5)−0.1038 (4)0.0240 (9)
H90.40560.3679−0.18420.029*
C100.6035 (6)0.1695 (5)−0.1209 (4)0.0289 (10)
H100.63160.1582−0.21340.035*
C110.6960 (6)0.0634 (5)−0.0029 (4)0.0282 (9)
H110.7911−0.0205−0.01280.034*
C120.6479 (5)0.0810 (4)0.1307 (4)0.0243 (9)
H120.71060.00720.21230.029*
H3A0.149 (5)0.288 (5)0.531 (5)0.037 (14)*
H3B0.234 (6)0.388 (4)0.563 (5)0.045 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.01564 (15)0.01420 (16)0.01338 (16)−0.00440 (11)−0.00143 (10)−0.00027 (11)
O10.0236 (14)0.0146 (13)0.0214 (14)−0.0080 (11)−0.0036 (11)0.0020 (11)
O20.0216 (13)0.0211 (14)0.0258 (15)−0.0135 (12)0.0028 (11)−0.0069 (12)
O30.0193 (14)0.0196 (15)0.0226 (15)−0.0068 (12)0.0009 (11)−0.0071 (12)
N10.0158 (15)0.0149 (16)0.0129 (16)−0.0050 (13)0.0013 (12)−0.0028 (13)
N20.0163 (15)0.0139 (16)0.0122 (16)−0.0035 (13)0.0010 (12)0.0008 (13)
N30.0174 (15)0.0203 (17)0.0183 (17)−0.0062 (14)0.0006 (13)−0.0037 (14)
N40.0158 (15)0.0193 (17)0.0186 (17)−0.0039 (13)0.0000 (13)−0.0048 (14)
N90.0146 (14)0.0157 (16)0.0154 (16)−0.0054 (13)0.0004 (12)−0.0035 (13)
N100.0159 (15)0.0134 (16)0.0204 (17)−0.0047 (13)0.0021 (13)−0.0027 (13)
C10.0130 (16)0.019 (2)0.0132 (18)−0.0056 (15)0.0047 (14)−0.0077 (16)
C20.0219 (19)0.022 (2)0.0133 (19)−0.0091 (17)0.0087 (16)−0.0108 (16)
C30.0181 (18)0.020 (2)0.017 (2)−0.0035 (16)0.0011 (16)−0.0034 (16)
C40.0218 (19)0.018 (2)0.025 (2)−0.0004 (17)−0.0010 (17)−0.0043 (17)
C50.0231 (19)0.017 (2)0.023 (2)−0.0026 (17)−0.0066 (17)0.0033 (17)
C60.0233 (19)0.020 (2)0.0126 (19)−0.0088 (17)0.0002 (16)0.0000 (16)
C70.0150 (17)0.0170 (19)0.0151 (19)−0.0071 (15)−0.0031 (15)−0.0018 (16)
C80.0146 (17)0.0166 (19)0.0159 (19)−0.0058 (15)0.0015 (15)−0.0027 (16)
C90.028 (2)0.027 (2)0.017 (2)−0.0085 (18)0.0041 (17)−0.0045 (17)
C100.034 (2)0.031 (2)0.022 (2)−0.007 (2)0.0113 (19)−0.0107 (19)
C110.033 (2)0.018 (2)0.029 (2)−0.0001 (18)0.0075 (19)−0.0059 (18)
C120.024 (2)0.016 (2)0.029 (2)−0.0026 (17)0.0019 (17)−0.0024 (17)

Geometric parameters (Å, °)

Cd1—N92.285 (3)N10—C121.349 (5)
Cd1—N2i2.304 (3)C1—C21.510 (5)
Cd1—N12.310 (3)C3—C41.372 (5)
Cd1—O32.314 (3)C3—H30.9966
Cd1—O12.330 (2)C4—C51.388 (6)
Cd1—N102.352 (3)C4—H40.9500
O1—C21.260 (4)C5—C61.389 (5)
O2—C21.242 (4)C5—H50.9500
O3—H3A0.80 (2)C6—C71.390 (5)
O3—H3B0.83 (2)C6—H60.9500
N1—C11.329 (5)C7—C81.500 (5)
N1—N21.342 (4)C8—C91.389 (5)
N2—N31.324 (4)C9—C101.382 (5)
N2—Cd1i2.304 (3)C9—H90.9500
N3—N41.330 (4)C10—C111.376 (6)
N4—C11.330 (5)C10—H100.9500
N9—C71.342 (5)C11—C121.386 (6)
N9—C31.344 (5)C11—H110.9500
N10—C81.342 (5)C12—H120.9500
N9—Cd1—N2i106.72 (10)N4—C1—C2127.8 (3)
N9—Cd1—N1155.62 (10)O2—C2—O1125.7 (4)
N2i—Cd1—N196.01 (10)O2—C2—C1118.7 (3)
N9—Cd1—O395.41 (10)O1—C2—C1115.6 (3)
N2i—Cd1—O387.65 (10)N9—C3—C4123.2 (3)
N1—Cd1—O394.18 (9)N9—C3—H3113.3
N9—Cd1—O185.09 (10)C4—C3—H3121.4
N2i—Cd1—O1168.16 (9)C3—C4—C5119.0 (4)
N1—Cd1—O172.19 (10)C3—C4—H4120.5
O3—Cd1—O192.14 (9)C5—C4—H4120.5
N9—Cd1—N1071.32 (10)C4—C5—C6118.2 (4)
N2i—Cd1—N1091.88 (10)C4—C5—H5120.9
N1—Cd1—N1099.78 (10)C6—C5—H5120.9
O3—Cd1—N10166.00 (10)C5—C6—C7119.6 (3)
O1—Cd1—N1091.16 (10)C5—C6—H6120.2
C2—O1—Cd1118.0 (2)C7—C6—H6120.2
Cd1—O3—H3A96 (3)N9—C7—C6121.7 (3)
Cd1—O3—H3B119 (3)N9—C7—C8116.5 (3)
H3A—O3—H3B117 (3)C6—C7—C8121.7 (3)
C1—N1—N2104.9 (3)N10—C8—C9121.9 (3)
C1—N1—Cd1113.4 (2)N10—C8—C7116.5 (3)
N2—N1—Cd1141.1 (2)C9—C8—C7121.5 (3)
N3—N2—N1108.9 (3)C10—C9—C8118.8 (4)
N3—N2—Cd1i128.6 (2)C10—C9—H9120.6
N1—N2—Cd1i122.5 (2)C8—C9—H9120.6
N2—N3—N4109.4 (3)C11—C10—C9119.5 (4)
N3—N4—C1105.2 (3)C11—C10—H10120.2
C7—N9—C3118.2 (3)C9—C10—H10120.2
C7—N9—Cd1118.7 (2)C10—C11—C12118.8 (4)
C3—N9—Cd1122.4 (2)C10—C11—H11120.6
C8—N10—C12118.8 (3)C12—C11—H11120.6
C8—N10—Cd1116.4 (2)N10—C12—C11122.1 (4)
C12—N10—Cd1124.7 (3)N10—C12—H12119.0
N1—C1—N4111.6 (3)C11—C12—H12119.0
N1—C1—C2120.6 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O2ii0.83 (2)2.01 (3)2.794 (4)158 (4)
O3—H3A···O2iii0.80 (2)2.09 (4)2.769 (4)143 (4)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2269).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, A.-L., Liu, N., Yue, Y.-F., Jiang, Y.-W., Gao, E.-Q., Yan, C.-H. & He, M.-Y. (2007). Chem. Commun. pp. 407–409. [PubMed]
  • Jia, Q.-X., Sun, W.-W., Yao, C.-F., Wu, H.-H., Gao, E.-Q. & Liu, C. (2009). Dalton Trans. pp. 2721–2730. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, A.-Q., Chen, Q.-Y., Wu, M.-F., Zheng, F.-K., Chen, F., Guo, G.-C. & Huang, J.-S. (2009). Inorg. Chem.62, 1622–1630.
  • Wu, M.-F., Zheng, F.-K., Wu, A.-Q., Li, -Y., Wang, M.-S., Zhou, W.-W., Chen, F., Guo, G.-C. & Huang, J.-S. (2010). CrystEngComm, 12, 260–269.
  • Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev.37, 84–100 [PubMed]
  • Zhong, D.-C., Meng, M., Zhu, J., Yang, G.-Y. & Lu, T.-B. (2010). Chem. Commun.46 , 4354–4356. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography