PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Aug 1, 2010; 66(Pt 8): o1924.
Published online Jul 7, 2010. doi:  10.1107/S1600536810024955
PMCID: PMC3007389
2-[(2Z,3E)-2-Hy­droxy­imino-5-phenyl-2,3-dihydro-3-thienyl­idene]-2-phenyl­acetonitrile
Nazar Rad,a* Yuri Teslenko,a Mykola Obushak,a Volodymyr Pavlyuk,a and Bernard Marciniakb
aDepartment of Chemistry, Ivan Franko National University of Lviv, Kyryla i, Mefodia Str. 8, 79005 Lviv, Ukraine
bInstitute of Chemistry and Environment Protection Jan Dlugosz University of Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Correspondence e-mail: rad_nazar/at/ukr.net
Received May 8, 2010; Accepted June 25, 2010.
Abstract
In the crystal structure of the title compound, C18H12N2OS, centrosymmetric dimers are stabilized both by van der Waals inter­actions and by two types of inter­molecular O—H(...)N hydrogen bonds. In addition, an intra­molecular C—H(...)S hydrogen bond is observed. The dihedral angles between the central ring and the two pendant phenyl rings are 7.4 (1) and 45.06 (9)°.
Related literature
For related heterocyclic compounds, see: Suwinsky et al. (2003). For a similar benzooxime, see: Davis et al. (1960 [triangle]). For applications of related reaction conditions, see: Davis & Pizzini (1960 [triangle]); Davis et al. (1961 [triangle]). For supra­molecular chemistry based on oximes, see: Bertolasi et al. (1982 [triangle]); Chertanova et al. (1994 [triangle]). For the biological relevance of oximes and thio­phene derivatives, see: Rappoport & Liebman (2008 [triangle]); Gronowitz (1963 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-66-o1924-scheme1.jpg Object name is e-66-o1924-scheme1.jpg
Crystal data
  • C18H12N2OS
  • M r = 304.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1924-efi1.jpg
  • a = 7.9826 (5) Å
  • b = 21.3400 (7) Å
  • c = 8.7253 (5) Å
  • β = 90.471 (7)°
  • V = 1486.29 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 293 K
  • 0.5 × 0.3 × 0.06 mm
Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.909, T max = 0.986
  • 9461 measured reflections
  • 3024 independent reflections
  • 2240 reflections with I > 2σ(I)
  • R int = 0.022
Refinement
  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.104
  • S = 1.04
  • 3024 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.23 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024955/im2200sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024955/im2200Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
Oximes can act both as donors and acceptors for hydrogen bonds, making them interesting materials for supramolecular chemistry (Bertolasi et al., 1982; Chertanova et al., 1994). Besides, oximes are among the most useful and versatile intermediates in synthetic organic chemistry, the Beckmann rearrangement and the reduction of oximes being two of the most useful transformations. Oximes are also interesting due to their wide application in medicine, industry and analytical chemistry. Owing to the oxime bond oxime derivatives also posses therapeuthic efficacy as a chemical tool for targeted intracellular delivery of synthetic oligonucleotides via conjugation to cell-penetrating peptides (Rappoport & Liebman, 2008). On the other hand, the discoveries of thiophene compounds in fungi and higher plants has awakened the interest of the natural product chemist in the chemistry of thiophenes (Gronowitz, 1963) Synthesis of thiophen-oximes resulted from our interest in the investigation of reactions between nitro-thiophene derivatives and arylacetonitriles. Due to containing oximic and nitrile moieties the title compound may be useful in prospective modifications. The molecule of the title compound is not planar: the phenyl moiety neighbouring to nitrile group is deviated from planarity by 45.06 (9)° and the second phenyl moiety is twisted by 7.4 (1)°. In the crystal structure solely the anti-isomer of the oxime is observed. The components of the structure are united into a three dimensional network by an extensive system of O—H···N intermolecular hydrogen bonds next to the intramolecular C(1)—H(1)···S(1) hydrogen bond. Adjacent molecules are linked into dimers by intermolecular O—H···N hydrogen bonds under participation of oximic groups. The distance between the nitrile nitrogen and oximic hydrogen atom of another molecule is 2.403 (2) Å. Dimers are further stacked in columns along the unique axis by π-π stacking interactions with centroid-centroid distances of 3.6 (1) Å.
Experimental
To 40 ml of a methanolic solution of potassium hydroxide (3.36 g, 60 mmoles) phenylacetonitrile (1.17 ml, 10 mmol) was added with stirring. Then 10 ml of a methanolic solution of 2-iodo-5-nitrothiophene (2.55 g, 10 mmol) was added to the reaction mixture. The suspension was stirred at room temperature until precipitation of product was ended. The reaction mixture was then poured into 100 ml of water and acidified by adding acetic acid. The precipitate was isolated by filtration, washed with water and dried. Red (orange) needles of title compound, m.p. (with decomp.) 394–395 K, yield 2.12 g (60%), were obtained after slowly cooling down an ethanolic solution.
Refinement
Positions of H atoms were calculated and refined using SHELXL constraints. All H atoms, including one bonded to O, were positioned geometrically with O—H = 0.82 Å and with C—H = 0.93 Å. Finally, thermal parameters of all hydrogen atoms were refined using an overall thermal isotropic parameter excluding the hydrogen atom of OH-group. Thermal parameter for hydrogen of OH-group was refined individually.
Figures
Fig. 1.
Fig. 1.
Molecular structure of the title compound, C18H12N2OS. Thermal ellipsoids represent a 50% probability level.
Fig. 2.
Fig. 2.
Crystal structure of the title compound.
Crystal data
C18H12N2OSF(000) = 632
Mr = 304.37Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2240 reflections
a = 7.9826 (5) Åθ = 2.5–26.4°
b = 21.3400 (7) ŵ = 0.22 mm1
c = 8.7253 (5) ÅT = 293 K
β = 90.471 (7)°Prism, translucent red
V = 1486.29 (14) Å30.5 × 0.3 × 0.06 mm
Z = 4
Data collection
Oxford Diffraction Xcalibur3 CCD diffractometer3024 independent reflections
Radiation source: fine-focus sealed tube2240 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)h = −9→9
Tmin = 0.909, Tmax = 0.986k = −26→26
9461 measured reflectionsl = −6→10
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
3024 reflections(Δ/σ)max = 0.004
203 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.23 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
S10.06721 (5)0.580998 (19)0.13057 (5)0.04795 (16)
O10.36433 (15)0.55770 (6)−0.00007 (15)0.0580 (3)
H1A0.45460.5529−0.04270.097 (8)*
N10.32525 (16)0.50389 (6)0.08232 (15)0.0450 (3)
N20.4444 (2)0.36514 (9)0.2067 (2)0.0826 (6)
C1−0.2697 (2)0.64260 (8)0.1895 (2)0.0559 (5)
H1−0.18660.65750.12500.0632 (16)*
C2−0.4127 (3)0.67764 (10)0.2115 (2)0.0680 (5)
H2−0.42500.71590.16140.0632 (16)*
C3−0.5363 (2)0.65684 (9)0.3058 (2)0.0623 (5)
H3−0.63280.68050.31980.0632 (16)*
C4−0.5168 (2)0.60064 (9)0.3797 (2)0.0628 (5)
H4−0.60010.58640.44480.0632 (16)*
C5−0.3749 (2)0.56499 (9)0.3585 (2)0.0544 (5)
H5−0.36380.52680.40900.0632 (16)*
C6−0.24840 (18)0.58563 (7)0.26236 (17)0.0408 (4)
C7−0.09669 (18)0.54839 (7)0.23836 (16)0.0390 (4)
C8−0.06423 (19)0.48957 (7)0.28617 (18)0.0415 (4)
H8−0.13930.46700.34560.0632 (16)*
C90.18360 (19)0.51144 (7)0.14809 (17)0.0388 (3)
C100.09381 (18)0.46385 (7)0.23958 (16)0.0375 (3)
C110.14890 (19)0.40472 (7)0.27078 (16)0.0391 (4)
C120.3148 (2)0.38504 (8)0.2323 (2)0.0523 (4)
C130.04594 (19)0.35461 (7)0.34177 (17)0.0378 (3)
C14−0.1207 (2)0.34566 (7)0.29922 (18)0.0427 (4)
H14−0.17070.37240.22820.0632 (16)*
C15−0.2121 (2)0.29741 (7)0.36173 (19)0.0491 (4)
H15−0.32340.29190.33240.0632 (16)*
C16−0.1409 (2)0.25741 (8)0.4668 (2)0.0550 (5)
H16−0.20340.22480.50820.0632 (16)*
C170.0237 (2)0.26584 (8)0.5107 (2)0.0545 (4)
H170.07180.23930.58330.0632 (16)*
C180.1177 (2)0.31341 (8)0.44739 (18)0.0468 (4)
H180.22970.31800.47540.0632 (16)*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
S10.0387 (2)0.0410 (2)0.0644 (3)0.00067 (16)0.01095 (19)0.00928 (19)
O10.0426 (7)0.0559 (7)0.0759 (9)−0.0023 (5)0.0200 (6)0.0146 (6)
N10.0363 (7)0.0461 (8)0.0526 (8)−0.0029 (6)0.0073 (6)0.0049 (6)
N20.0541 (11)0.0943 (13)0.0999 (14)0.0288 (9)0.0251 (9)0.0426 (11)
C10.0530 (11)0.0508 (10)0.0639 (11)0.0104 (8)0.0127 (8)0.0087 (9)
C20.0679 (13)0.0587 (12)0.0774 (13)0.0254 (10)0.0106 (10)0.0133 (10)
C30.0495 (11)0.0632 (12)0.0743 (12)0.0198 (9)0.0064 (9)−0.0050 (10)
C40.0458 (10)0.0657 (12)0.0774 (13)0.0065 (9)0.0213 (9)−0.0022 (10)
C50.0466 (10)0.0464 (9)0.0706 (12)0.0045 (8)0.0148 (8)0.0036 (8)
C60.0361 (8)0.0401 (9)0.0462 (9)0.0009 (6)0.0034 (7)−0.0061 (7)
C70.0352 (8)0.0386 (8)0.0435 (8)−0.0015 (6)0.0050 (6)−0.0032 (7)
C80.0390 (9)0.0380 (8)0.0476 (9)−0.0012 (6)0.0094 (7)0.0020 (7)
C90.0336 (8)0.0391 (8)0.0439 (8)−0.0002 (6)0.0028 (6)−0.0006 (7)
C100.0334 (8)0.0399 (8)0.0391 (8)−0.0011 (6)0.0030 (6)−0.0012 (6)
C110.0348 (8)0.0432 (8)0.0396 (8)0.0035 (6)0.0023 (6)0.0016 (6)
C120.0427 (10)0.0565 (10)0.0579 (11)0.0085 (8)0.0079 (8)0.0176 (8)
C130.0407 (9)0.0344 (8)0.0385 (8)0.0042 (6)0.0067 (6)−0.0013 (6)
C140.0421 (9)0.0385 (8)0.0476 (9)0.0051 (7)0.0025 (7)0.0003 (7)
C150.0438 (10)0.0427 (9)0.0611 (11)−0.0012 (7)0.0063 (8)−0.0017 (8)
C160.0628 (12)0.0405 (9)0.0619 (11)−0.0011 (8)0.0157 (9)0.0045 (8)
C170.0671 (12)0.0442 (9)0.0522 (10)0.0097 (8)0.0025 (8)0.0114 (8)
C180.0475 (10)0.0435 (9)0.0492 (9)0.0067 (7)−0.0013 (7)0.0019 (7)
Geometric parameters (Å, °)
S1—C91.7571 (15)C7—C81.347 (2)
S1—C71.7609 (15)C8—C101.438 (2)
O1—N11.3916 (17)C8—H80.9300
O1—H1A0.8200C9—C101.480 (2)
N1—C91.282 (2)C10—C111.363 (2)
N2—C121.142 (2)C11—C121.432 (2)
C1—C21.379 (2)C11—C131.487 (2)
C1—C61.382 (2)C13—C141.391 (2)
C1—H10.9300C13—C181.394 (2)
C2—C31.365 (3)C14—C151.377 (2)
C2—H20.9300C14—H140.9300
C3—C41.370 (3)C15—C161.373 (2)
C3—H30.9300C15—H150.9300
C4—C51.378 (2)C16—C171.378 (2)
C4—H40.9300C16—H160.9300
C5—C61.390 (2)C17—C181.380 (2)
C5—H50.9300C17—H170.9300
C6—C71.465 (2)C18—H180.9300
C9—S1—C790.83 (7)N1—C9—S1122.34 (12)
N1—O1—H1A109.5C10—C9—S1111.62 (11)
C9—N1—O1109.24 (12)C11—C10—C8125.41 (13)
C2—C1—C6120.82 (17)C11—C10—C9125.87 (13)
C2—C1—H1119.6C8—C10—C9108.69 (13)
C6—C1—H1119.6C10—C11—C12121.48 (14)
C3—C2—C1120.71 (18)C10—C11—C13124.78 (13)
C3—C2—H2119.6C12—C11—C13113.72 (13)
C1—C2—H2119.6N2—C12—C11174.86 (18)
C2—C3—C4119.24 (17)C14—C13—C18118.49 (14)
C2—C3—H3120.4C14—C13—C11121.21 (13)
C4—C3—H3120.4C18—C13—C11120.23 (14)
C3—C4—C5120.74 (18)C15—C14—C13120.35 (15)
C3—C4—H4119.6C15—C14—H14119.8
C5—C4—H4119.6C13—C14—H14119.8
C4—C5—C6120.52 (17)C16—C15—C14120.80 (16)
C4—C5—H5119.7C16—C15—H15119.6
C6—C5—H5119.7C14—C15—H15119.6
C1—C6—C5117.97 (15)C15—C16—C17119.55 (16)
C1—C6—C7120.69 (14)C15—C16—H16120.2
C5—C6—C7121.34 (14)C17—C16—H16120.2
C8—C7—C6128.19 (14)C16—C17—C18120.36 (16)
C8—C7—S1113.06 (11)C16—C17—H17119.8
C6—C7—S1118.74 (11)C18—C17—H17119.8
C7—C8—C10115.79 (13)C17—C18—C13120.44 (16)
C7—C8—H8122.1C17—C18—H18119.8
C10—C8—H8122.1C13—C18—H18119.8
N1—C9—C10125.99 (14)
C6—C1—C2—C30.1 (3)N1—C9—C10—C111.3 (3)
C1—C2—C3—C40.3 (3)S1—C9—C10—C11178.39 (13)
C2—C3—C4—C5−0.6 (3)N1—C9—C10—C8−176.87 (15)
C3—C4—C5—C60.4 (3)S1—C9—C10—C80.27 (16)
C2—C1—C6—C5−0.3 (3)C8—C10—C11—C12−174.00 (15)
C2—C1—C6—C7179.74 (18)C9—C10—C11—C128.2 (2)
C4—C5—C6—C10.0 (3)C8—C10—C11—C137.8 (2)
C4—C5—C6—C7−179.99 (16)C9—C10—C11—C13−169.97 (14)
C1—C6—C7—C8−172.02 (16)C10—C11—C12—N2177 (2)
C5—C6—C7—C88.0 (3)C13—C11—C12—N2−5(2)
C1—C6—C7—S16.3 (2)C10—C11—C13—C1441.3 (2)
C5—C6—C7—S1−173.67 (13)C12—C11—C13—C14−137.00 (15)
C9—S1—C7—C80.99 (13)C10—C11—C13—C18−142.00 (16)
C9—S1—C7—C6−177.60 (12)C12—C11—C13—C1839.7 (2)
C6—C7—C8—C10177.39 (14)C18—C13—C14—C150.6 (2)
S1—C7—C8—C10−1.04 (18)C11—C13—C14—C15177.37 (14)
O1—N1—C9—C10176.52 (13)C13—C14—C15—C160.0 (2)
O1—N1—C9—S1−0.34 (19)C14—C15—C16—C170.3 (2)
C7—S1—C9—N1176.57 (14)C15—C16—C17—C18−1.2 (3)
C7—S1—C9—C10−0.69 (12)C16—C17—C18—C131.9 (2)
C7—C8—C10—C11−177.64 (15)C14—C13—C18—C17−1.5 (2)
C7—C8—C10—C90.49 (19)C11—C13—C18—C17−178.36 (14)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.162.900 (2)150
O1—H1A···N2i0.822.402.888 (2)119
C1—H1···S10.932.603.041 (2)109
Symmetry codes: (i) −x+1, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2200).
  • Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.
  • Davis, R. B. & Pizzini, L. C. (1960). J. Org. Chem.25, 1884–1888.
  • Davis, R. B., Pizzini, L. C. & Bara, E. J. (1961). J. Org. Chem.26, 4270–4274.
  • Davis, R. B., Pizzini, L. C. & Benigni, J. D. (1960). J. Am. Chem. Soc 82, 2913–2915.
  • Gronowitz, S. (1963). Adv. Heterocycl. Chem.1, 1–124. [PubMed]
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Rappoport, Z. & Liebman, J. F. (2008). Editors. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, pp. 609–651. Chichester: Wiley-VCH.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suwiński, J., Świerczek, K., Wagner, P., Kubicki, M., Borowiak, T. & Słowikowska, J. (2003). J. Heterocycl. Chem.40, 523–528.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920-925.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography