PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1935–o1936.
Published online 2010 July 7. doi:  10.1107/S1600536810025924
PMCID: PMC3007384

2-Amino-5-bromo­pyridine–4-hy­droxy­benzoic acid (1/1)

Abstract

The title 1:1 adduct, C5H5BrN2·C7H6O3, contains two mol­ecules of each species in the asymmetric unit, with similar geometries. In the crystal, mol­ecules are linked to form extended chains along [100] by N—H(...)O, O—H(...)O, O—H(...)N and C—H(...)O hydrogen bonds. Adjacent chains are crosslinked via further N—H(...)O inter­actions into sheets lying parallel to (001). The crystal studied was an inversion twin with a 0.54 (2):0.46 (2) domain ratio.

Related literature

For substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For details of hydrogen bonding, see: Scheiner (1997 [triangle]); Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]). For 4-hy­droxy­benzoic acid, see: Vishweshwar et al. (2003 [triangle]). For related structures, see: Hemamalini & Fun (2010a [triangle],b [triangle],c [triangle]); Quah et al. (2008a [triangle],b [triangle], 2010 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1935-scheme1.jpg

Experimental

Crystal data

  • C5H5BrN2·C7H6O3
  • M r = 311.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1935-efi1.jpg
  • a = 21.370 (12) Å
  • b = 3.990 (2) Å
  • c = 28.939 (15) Å
  • V = 2467 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.33 mm−1
  • T = 100 K
  • 0.29 × 0.12 × 0.09 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.449, T max = 0.763
  • 6994 measured reflections
  • 3770 independent reflections
  • 2994 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.148
  • S = 1.10
  • 3770 reflections
  • 296 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.99 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1554 Friedel pairs
  • Flack parameter: 0.54 (2)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025924/hb5539sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025924/hb5539Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form co-crystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 2-amino-5-bromopyridine-benzoic acid (Hemamalini & Fun, 2010a), 2-amino-5-bromopyridinium 3-aminobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-bromopyridinium hydrogen succinate (Hemamalini & Fun, 2010c) from our laboratory. In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridine molecules (A and B) and two 4-hydroxybenzoic acid (A and B) with comparable geometries. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). Each 2-amino-5-bromopyridine molecule is approximately planar, with a maximum deviation of 0.020 (8) Å for atom C4A in molecule A and 0.021 (8) Å for atom C1B in molecule B. In molecule A, the 2-amino-5-bromopyridine molecule is inclined at dihedral angle of 28.8 (3) and 55.7 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for molecule B are 45.6 (3) and 27.2 (3)°.

In the crystal packing, the molecules are linked to form extended chains along [100] by intermolecular N2A–H2AA···O3A, N2B–H2BA···O3B, O–H···O, O–H···N and C–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked via N2A–H2AB···O1A interactions into two-dimensional networks (Fig. 2) parallel to the (001).

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and 4-hydroxybenzoic acid (34 mg, Merck) were mixed and warmed over a heating hotplate magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly to room temperature and brown needles of (I) appeared after a few days.

Refinement

All H atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å; and Uiso(H) = 1.5 Ueq(O), 1.2 Ueq(N) and 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 1.06 Å from BR1B and the deepest hole is located at 0.90 Å from BR1B. The same Uij parameters were used for atom pairs C1A/C1B, C2A/C3A, C2B/C3B, C8A/C8B and C9A/C9B. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal structure of (I) viewed along the b axis. H atoms not involved in intermolecular hydrogen bond interactions (dashed lines) have been omitted for clarity.

Crystal data

C5H5BrN2·C7H6O3F(000) = 1248
Mr = 311.14Dx = 1.675 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1665 reflections
a = 21.370 (12) Åθ = 2.4–25.0°
b = 3.990 (2) ŵ = 3.33 mm1
c = 28.939 (15) ÅT = 100 K
V = 2467 (2) Å3Needle, brown
Z = 80.29 × 0.12 × 0.09 mm

Data collection

Bruker SMART APEXII DUO CCD diffractometer3770 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −25→19
Tmin = 0.449, Tmax = 0.763k = −4→4
6994 measured reflectionsl = −30→34

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.148w = 1/[σ2(Fo2) + (0.0538P)2 + 9.0399P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3770 reflectionsΔρmax = 0.72 e Å3
296 parametersΔρmin = −0.99 e Å3
1 restraintAbsolute structure: Flack (1983), 1554 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.54 (2)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1A0.00906 (6)0.7888 (2)0.30916 (3)0.0442 (3)
N1A−0.0212 (3)0.348 (2)0.4357 (3)0.0213 (18)
N2A0.0361 (4)0.2594 (19)0.5015 (3)0.0281 (18)
H2AA0.00400.15840.51270.034*
H2AB0.06970.27760.51770.034*
C1A−0.0273 (5)0.469 (2)0.3934 (3)0.0262 (14)
H1AA−0.06570.44600.37870.031*
C2A0.0212 (5)0.628 (2)0.3699 (3)0.0265 (15)
C3A0.0794 (5)0.672 (2)0.3928 (3)0.0265 (15)
H3AA0.11320.77400.37820.032*
C4A0.0836 (4)0.556 (2)0.4369 (3)0.021 (2)
H4AA0.12060.58900.45320.026*
C5A0.0338 (4)0.389 (2)0.4585 (3)0.020 (2)
Br1B0.25717 (6)0.3515 (2)0.37657 (4)0.0456 (3)
N1B0.2861 (4)−0.067 (2)0.2491 (3)0.0265 (19)
N2B0.2263 (4)−0.178 (2)0.1857 (3)0.030 (2)
H2BA0.2591−0.26040.17280.036*
H2BB0.1912−0.17600.17110.036*
C1B0.2925 (5)0.049 (2)0.2930 (3)0.0262 (14)
H1BA0.33120.03460.30750.031*
C2B0.2442 (5)0.183 (2)0.3155 (4)0.0276 (16)
C3B0.1851 (5)0.196 (2)0.2964 (3)0.0276 (16)
H3BA0.15140.28320.31290.033*
C4B0.1773 (4)0.076 (2)0.2513 (3)0.022 (2)
H4BA0.13830.08220.23700.027*
C5B0.2297 (4)−0.056 (2)0.2280 (3)0.021 (2)
O1A0.6515 (3)0.3077 (15)0.5579 (2)0.0242 (15)
H1AB0.64710.31090.58600.036*
O2A0.8817 (3)1.0048 (16)0.4626 (2)0.0225 (14)
H2AC0.91441.10650.45790.034*
O3A0.9066 (3)1.1204 (15)0.5362 (2)0.0234 (14)
C6A0.7754 (4)0.662 (2)0.4870 (3)0.018 (2)
H6A0.78680.67120.45610.022*
C7A0.7202 (4)0.498 (2)0.5000 (3)0.023 (2)
H7A0.69470.39960.47770.027*
C8A0.7043 (4)0.483 (2)0.5461 (3)0.0195 (13)
C9A0.7426 (4)0.634 (2)0.5785 (3)0.0179 (14)
H9A0.73110.62830.60940.022*
C10A0.7957 (4)0.789 (2)0.5664 (3)0.017 (2)
H10A0.82120.88110.58920.020*
C11A0.8133 (4)0.813 (2)0.5202 (3)0.0180 (19)
C12A0.8711 (4)0.990 (2)0.5070 (3)0.020 (2)
O1B0.6068 (3)−0.1993 (15)0.1278 (2)0.0235 (14)
H1BB0.6039−0.25580.10060.035*
O2B0.3859 (3)0.5786 (15)0.2236 (2)0.0235 (14)
H2BC0.35410.68880.22820.035*
O3B0.3558 (3)0.6584 (16)0.1505 (2)0.0215 (14)
C6B0.4619 (4)0.286 (2)0.1194 (3)0.023 (2)
H6B0.43500.36800.09680.027*
C7B0.5150 (4)0.105 (2)0.1061 (4)0.023 (2)
H7B0.52340.06530.07500.028*
C8B0.5547 (4)−0.0131 (19)0.1401 (3)0.0195 (13)
C9B0.5417 (4)0.031 (2)0.1864 (3)0.0179 (14)
H8B0.5680−0.06070.20860.022*
C10B0.4906 (4)0.210 (2)0.1995 (3)0.022 (2)
H10B0.48280.24420.23070.026*
C11B0.4487 (4)0.345 (2)0.1661 (3)0.0134 (18)
C12B0.3937 (4)0.539 (2)0.1789 (3)0.017 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0924 (9)0.0243 (4)0.0159 (5)−0.0036 (5)0.0007 (7)0.0058 (6)
N1A0.023 (4)0.025 (4)0.016 (4)−0.004 (3)−0.001 (3)0.001 (4)
N2A0.040 (5)0.029 (4)0.016 (4)−0.003 (4)−0.001 (4)−0.003 (3)
C1A0.037 (4)0.029 (3)0.013 (3)0.003 (3)−0.002 (3)0.002 (3)
C2A0.051 (4)0.014 (3)0.014 (4)0.002 (3)0.008 (3)0.007 (3)
C3A0.051 (4)0.014 (3)0.014 (4)0.002 (3)0.008 (3)0.007 (3)
C4A0.030 (5)0.013 (4)0.021 (5)0.000 (4)0.009 (4)0.003 (4)
C5A0.027 (6)0.012 (4)0.020 (5)−0.003 (4)−0.002 (4)0.000 (4)
Br1B0.0919 (10)0.0266 (5)0.0183 (5)0.0062 (5)0.0027 (6)−0.0037 (5)
N1B0.022 (5)0.028 (4)0.030 (5)−0.003 (4)−0.006 (4)0.000 (4)
N2B0.010 (4)0.040 (5)0.041 (6)0.001 (4)0.005 (3)0.003 (4)
C1B0.037 (4)0.029 (3)0.013 (3)0.003 (3)−0.002 (3)0.002 (3)
C2B0.052 (4)0.012 (3)0.018 (4)−0.005 (3)0.008 (3)0.000 (3)
C3B0.052 (4)0.012 (3)0.018 (4)−0.005 (3)0.008 (3)0.000 (3)
C4B0.032 (6)0.013 (4)0.023 (5)0.005 (4)0.007 (4)−0.004 (4)
C5B0.029 (5)0.013 (4)0.020 (5)0.002 (4)0.001 (4)0.013 (4)
O1A0.026 (3)0.029 (3)0.018 (4)−0.003 (3)0.001 (3)0.001 (3)
O2A0.018 (3)0.036 (4)0.014 (4)−0.005 (3)0.002 (3)0.003 (3)
O3A0.031 (4)0.025 (3)0.014 (3)−0.006 (3)−0.003 (3)−0.001 (3)
C6A0.029 (5)0.012 (4)0.014 (5)0.004 (4)−0.007 (4)0.003 (4)
C7A0.020 (5)0.020 (5)0.029 (6)0.000 (4)−0.008 (4)−0.006 (4)
C8A0.024 (3)0.007 (3)0.027 (3)−0.005 (3)−0.002 (3)0.000 (3)
C9A0.021 (4)0.020 (3)0.013 (3)0.000 (3)−0.003 (3)0.007 (3)
C10A0.027 (5)0.007 (4)0.017 (5)−0.001 (4)−0.003 (4)0.001 (3)
C11A0.024 (5)0.017 (4)0.013 (5)−0.004 (4)0.000 (4)−0.003 (4)
C12A0.024 (5)0.023 (4)0.013 (5)0.010 (4)−0.001 (4)−0.004 (4)
O1B0.028 (4)0.025 (3)0.018 (4)0.000 (3)−0.001 (3)−0.006 (3)
O2B0.024 (3)0.033 (3)0.014 (4)0.005 (3)0.003 (3)0.003 (3)
O3B0.021 (3)0.027 (3)0.017 (3)−0.002 (3)−0.003 (3)0.005 (3)
C6B0.029 (5)0.019 (5)0.020 (5)−0.008 (4)0.002 (4)0.004 (4)
C7B0.028 (5)0.020 (5)0.021 (5)0.001 (4)−0.001 (4)−0.012 (4)
C8B0.024 (3)0.007 (3)0.027 (3)−0.005 (3)−0.002 (3)0.000 (3)
C9B0.021 (4)0.020 (3)0.013 (3)0.000 (3)−0.003 (3)0.007 (3)
C10B0.027 (5)0.029 (5)0.009 (5)−0.007 (4)0.002 (4)−0.004 (4)
C11B0.020 (5)0.011 (4)0.009 (4)−0.004 (4)−0.002 (3)−0.001 (3)
C12B0.019 (5)0.019 (4)0.014 (5)−0.011 (4)0.001 (4)−0.004 (4)

Geometric parameters (Å, °)

Br1A—C2A1.889 (10)O2A—H2AC0.8200
N1A—C1A1.322 (11)O3A—C12A1.249 (10)
N1A—C5A1.359 (11)C6A—C11A1.391 (12)
N2A—C5A1.349 (12)C6A—C7A1.400 (13)
N2A—H2AA0.8600C6A—H6A0.9300
N2A—H2AB0.8600C7A—C8A1.378 (14)
C1A—C2A1.394 (13)C7A—H7A0.9300
C1A—H1AA0.9300C8A—C9A1.383 (13)
C2A—C3A1.418 (14)C9A—C10A1.338 (13)
C3A—C4A1.360 (12)C9A—H9A0.9300
C3A—H3AA0.9300C10A—C11A1.393 (12)
C4A—C5A1.402 (12)C10A—H10A0.9300
C4A—H4AA0.9300C11A—C12A1.474 (13)
Br1B—C2B1.912 (10)O1B—C8B1.384 (11)
N1B—C5B1.351 (11)O1B—H1BB0.8200
N1B—C1B1.359 (12)O2B—C12B1.312 (10)
N2B—C5B1.318 (13)O2B—H2BC0.8200
N2B—H2BA0.8600O3B—C12B1.250 (11)
N2B—H2BB0.8600C6B—C7B1.396 (13)
C1B—C2B1.332 (13)C6B—C11B1.401 (12)
C1B—H1BA0.9300C6B—H6B0.9300
C2B—C3B1.381 (14)C7B—C8B1.383 (14)
C3B—C4B1.400 (12)C7B—H7B0.9300
C3B—H3BA0.9300C8B—C9B1.379 (13)
C4B—C5B1.410 (12)C9B—C10B1.358 (13)
C4B—H4BA0.9300C9B—H8B0.9300
O1A—C8A1.370 (10)C10B—C11B1.423 (13)
O1A—H1AB0.8200C10B—H10B0.9300
O2A—C12A1.307 (11)C11B—C12B1.456 (12)
C1A—N1A—C5A119.3 (8)C7A—C6A—H6A119.7
C5A—N2A—H2AA120.0C8A—C7A—C6A119.1 (8)
C5A—N2A—H2AB120.0C8A—C7A—H7A120.4
H2AA—N2A—H2AB120.0C6A—C7A—H7A120.4
N1A—C1A—C2A123.1 (9)O1A—C8A—C7A117.9 (8)
N1A—C1A—H1AA118.5O1A—C8A—C9A122.7 (9)
C2A—C1A—H1AA118.5C7A—C8A—C9A119.4 (8)
C1A—C2A—C3A118.7 (9)C10A—C9A—C8A121.8 (9)
C1A—C2A—Br1A120.5 (8)C10A—C9A—H9A119.1
C3A—C2A—Br1A120.8 (7)C8A—C9A—H9A119.1
C4A—C3A—C2A117.0 (9)C9A—C10A—C11A120.7 (8)
C4A—C3A—H3AA121.5C9A—C10A—H10A119.7
C2A—C3A—H3AA121.5C11A—C10A—H10A119.7
C3A—C4A—C5A122.0 (9)C6A—C11A—C10A118.4 (8)
C3A—C4A—H4AA119.0C6A—C11A—C12A121.1 (8)
C5A—C4A—H4AA119.0C10A—C11A—C12A120.5 (8)
N2A—C5A—N1A115.5 (8)O3A—C12A—O2A122.8 (8)
N2A—C5A—C4A124.6 (8)O3A—C12A—C11A122.3 (8)
N1A—C5A—C4A119.9 (8)O2A—C12A—C11A114.9 (7)
C5B—N1B—C1B120.1 (9)C8B—O1B—H1BB109.5
C5B—N2B—H2BA120.0C12B—O2B—H2BC109.5
C5B—N2B—H2BB120.0C7B—C6B—C11B121.1 (9)
H2BA—N2B—H2BB120.0C7B—C6B—H6B119.5
C2B—C1B—N1B121.0 (9)C11B—C6B—H6B119.5
C2B—C1B—H1BA119.5C8B—C7B—C6B118.6 (9)
N1B—C1B—H1BA119.5C8B—C7B—H7B120.7
C1B—C2B—C3B121.9 (10)C6B—C7B—H7B120.7
C1B—C2B—Br1B118.8 (8)C9B—C8B—C7B121.6 (8)
C3B—C2B—Br1B119.3 (7)C9B—C8B—O1B118.7 (8)
C2B—C3B—C4B117.9 (9)C7B—C8B—O1B119.6 (9)
C2B—C3B—H3BA121.0C10B—C9B—C8B120.0 (8)
C4B—C3B—H3BA121.0C10B—C9B—H8B120.0
C3B—C4B—C5B118.7 (9)C8B—C9B—H8B120.0
C3B—C4B—H4BA120.7C9B—C10B—C11B121.0 (9)
C5B—C4B—H4BA120.7C9B—C10B—H10B119.5
N2B—C5B—N1B117.2 (8)C11B—C10B—H10B119.5
N2B—C5B—C4B122.5 (9)C6B—C11B—C10B117.7 (8)
N1B—C5B—C4B120.3 (9)C6B—C11B—C12B119.9 (8)
C8A—O1A—H1AB109.5C10B—C11B—C12B122.4 (8)
C12A—O2A—H2AC109.5O3B—C12B—O2B121.2 (8)
C11A—C6A—C7A120.6 (9)O3B—C12B—C11B124.0 (8)
C11A—C6A—H6A119.7O2B—C12B—C11B114.8 (8)
C5A—N1A—C1A—C2A2.4 (14)C7A—C8A—C9A—C10A−1.6 (13)
N1A—C1A—C2A—C3A−1.6 (14)C8A—C9A—C10A—C11A2.3 (13)
N1A—C1A—C2A—Br1A179.1 (7)C7A—C6A—C11A—C10A1.4 (13)
C1A—C2A—C3A—C4A−0.9 (13)C7A—C6A—C11A—C12A−179.2 (8)
Br1A—C2A—C3A—C4A178.4 (6)C9A—C10A—C11A—C6A−2.1 (13)
C2A—C3A—C4A—C5A2.6 (13)C9A—C10A—C11A—C12A178.5 (8)
C1A—N1A—C5A—N2A179.8 (8)C6A—C11A—C12A—O3A−178.3 (8)
C1A—N1A—C5A—C4A−0.6 (13)C10A—C11A—C12A—O3A1.1 (13)
C3A—C4A—C5A—N2A177.5 (9)C6A—C11A—C12A—O2A2.6 (12)
C3A—C4A—C5A—N1A−1.9 (13)C10A—C11A—C12A—O2A−178.1 (8)
C5B—N1B—C1B—C2B−1.8 (14)C11B—C6B—C7B—C8B−0.5 (13)
N1B—C1B—C2B—C3B3.1 (14)C6B—C7B—C8B—C9B2.7 (13)
N1B—C1B—C2B—Br1B−178.4 (7)C6B—C7B—C8B—O1B178.5 (7)
C1B—C2B—C3B—C4B−2.4 (13)C7B—C8B—C9B—C10B−3.4 (13)
Br1B—C2B—C3B—C4B179.1 (6)O1B—C8B—C9B—C10B−179.3 (8)
C2B—C3B—C4B—C5B0.6 (12)C8B—C9B—C10B—C11B1.9 (13)
C1B—N1B—C5B—N2B−178.7 (8)C7B—C6B—C11B—C10B−1.0 (12)
C1B—N1B—C5B—C4B0.1 (13)C7B—C6B—C11B—C12B178.9 (8)
C3B—C4B—C5B—N2B179.2 (8)C9B—C10B—C11B—C6B0.3 (12)
C3B—C4B—C5B—N1B0.5 (12)C9B—C10B—C11B—C12B−179.5 (8)
C11A—C6A—C7A—C8A−0.8 (13)C6B—C11B—C12B—O3B0.8 (12)
C6A—C7A—C8A—O1A−177.2 (7)C10B—C11B—C12B—O3B−179.4 (8)
C6A—C7A—C8A—C9A0.8 (13)C6B—C11B—C12B—O2B−180.0 (7)
O1A—C8A—C9A—C10A176.3 (8)C10B—C11B—C12B—O2B−0.2 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O3Ai0.862.192.996 (11)155
N2A—H2AB···O1Aii0.862.132.969 (11)166
N2B—H2BA···O3Biii0.862.193.020 (11)163
O1A—H1AB···O3Biv0.821.872.688 (8)175
O2A—H2AC···N1Av0.821.802.605 (10)168
O1B—H1BB···O3Avi0.821.942.762 (8)177
O2B—H2BC···N1Bvii0.821.852.663 (11)170
C6B—H6B···O1Aviii0.932.523.416 (11)161
C7B—H7B···O3Avi0.932.583.262 (12)131
C9A—H9A···O3Biv0.932.483.182 (11)132
C10A—H10A···O1Bix0.932.533.416 (11)158

Symmetry codes: (i) x−1, y−1, z; (ii) x−1/2, −y+1/2, z; (iii) x, y−1, z; (iv) −x+1, −y+1, z+1/2; (v) x+1, y+1, z; (vi) −x+3/2, y−3/2, z−1/2; (vii) x, y+1, z; (viii) −x+1, −y+1, z−1/2; (ix) −x+3/2, y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5539).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o663. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o664. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o689–o690. [PMC free article] [PubMed]
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  • Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932. [PMC free article] [PubMed]
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879. [PMC free article] [PubMed]
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230. [PMC free article] [PubMed]
  • Scheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective New York: Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography