PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1997.
Published online 2010 July 14. doi:  10.1107/S1600536810026759
PMCID: PMC3007381

N-(4-Chloro­benzo­yl)-2-methyl­benzene­sulfonamide

Abstract

The asymmetric unit of the title compound, C14H12ClNO3S, contains two independent mol­ecules. The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the S=O bonds. The mol­ecules are twisted at the S atoms with torsion angles of −54.2 (2) and 63.8 (2)° in the two mol­ecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 85.0 (1) and 87.0 (1)°. Furthermore, the dihedral angles between the sulfonyl and benzoyl benzene rings are 89.4 (1) and 82.4 (1)° in the two mol­ecules. In the crystal, mol­ecules are linked by N—H(...)O(S) hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2010 [triangle]); Suchetan et al. (2010a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1997-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO3S
  • M r = 309.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1997-efi1.jpg
  • a = 10.9188 (9) Å
  • b = 12.157 (1) Å
  • c = 12.347 (1) Å
  • α = 60.533 (7)°
  • β = 84.705 (9)°
  • γ = 84.254 (9)°
  • V = 1418.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 299 K
  • 0.38 × 0.24 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.856, T max = 0.943
  • 9975 measured reflections
  • 5808 independent reflections
  • 4476 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.110
  • S = 1.09
  • 5808 reflections
  • 369 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026759/ds2041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026759/ds2041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010); Suchetan et al., 2010a,b,c), the structure of 2-methyl-N-(4-chlorobenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules (Fig.1), similar to that observed in 2-methyl-N- (4-methylbenzoyl)benzenesulfonamide(II)(Gowda et al., 2010b).

The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformations of the N—H bonds are anti to the C=O bonds, similar to those observed in (II), N-(4-chlorobenzoyl)benzenesulfonamide (Suchetan et al., 2010b), 2-methyl-N-(benzoyl)- benzenesulfonamide (Suchetan et al., 2010c) and 4-methyl-N-(4-chlorobenzoyl)benzenesulfonamide (V) (Suchetan et al., 2010a).

The molecules are twisted at the the S atoms with the torsional angles of -54.2 (2)° and 63.8 (2)°, in the two independent molecules, compared to the values of -53.1 (2)° and 61.2 (2)° in the two molecules of (II). The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 85.0 (1)° and 87.0 (1)°, compared to the values of 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2) in (II). Furthermore, the dihedral angles between the sulfonyl and the benzoyl benzene rings are 89.4 (1)° (molecule 1) and 82.1 (1)° (molecule 2), compared to the values of 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (II).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 4-chlorobenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, 2-methyl-N-(4-chlorobenzoyl)benzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12ClNO3SZ = 4
Mr = 309.76F(000) = 640
Triclinic, P1Dx = 1.451 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9188 (9) ÅCell parameters from 4120 reflections
b = 12.157 (1) Åθ = 2.5–27.8°
c = 12.347 (1) ŵ = 0.42 mm1
α = 60.533 (7)°T = 299 K
β = 84.705 (9)°Plate, colourless
γ = 84.254 (9)°0.38 × 0.24 × 0.14 mm
V = 1418.0 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector5808 independent reflections
Radiation source: fine-focus sealed tube4476 reflections with I > 2σ(I)
graphiteRint = 0.015
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −12→13
Tmin = 0.856, Tmax = 0.943k = −14→15
9975 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2188P] where P = (Fo2 + 2Fc2)/3
5808 reflections(Δ/σ)max = 0.014
369 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = −0.37 e Å3

Special details

Experimental. (CrysAlis RED; Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.53923 (8)−0.01400 (6)0.72546 (6)0.0865 (2)
S10.23682 (4)0.66981 (4)0.15634 (4)0.03693 (13)
O10.20430 (13)0.64973 (13)0.05769 (12)0.0483 (3)
O20.31448 (13)0.76921 (13)0.12668 (14)0.0525 (4)
O30.30465 (14)0.58139 (14)0.40938 (13)0.0522 (4)
N10.30122 (15)0.53209 (14)0.25605 (14)0.0373 (3)
H1N0.3207 (18)0.4863 (18)0.2247 (18)0.045*
C10.10164 (16)0.69177 (17)0.23579 (16)0.0378 (4)
C20.00714 (19)0.6087 (2)0.2801 (2)0.0513 (5)
C3−0.0959 (2)0.6412 (3)0.3366 (2)0.0692 (7)
H3−0.16130.58860.36690.083*
C4−0.1045 (2)0.7472 (3)0.3491 (3)0.0737 (8)
H4−0.17500.76570.38710.088*
C5−0.0097 (2)0.8268 (2)0.3060 (2)0.0618 (6)
H5−0.01540.89870.31520.074*
C60.09419 (19)0.7994 (2)0.24898 (19)0.0471 (5)
H60.15900.85270.21950.056*
C70.32853 (16)0.50361 (17)0.37495 (17)0.0357 (4)
C80.38324 (16)0.37429 (17)0.45661 (16)0.0348 (4)
C90.38889 (19)0.27606 (18)0.42869 (17)0.0440 (5)
H90.36090.29090.35350.053*
C100.4358 (2)0.1569 (2)0.51173 (19)0.0533 (5)
H100.43820.09090.49360.064*
C110.4790 (2)0.1366 (2)0.62180 (18)0.0505 (5)
C120.47585 (19)0.2323 (2)0.65098 (18)0.0505 (5)
H120.50660.21750.72510.061*
C130.42662 (18)0.35041 (19)0.56893 (17)0.0417 (4)
H130.42230.41520.58890.050*
C140.0106 (3)0.4896 (3)0.2710 (3)0.0750 (8)
H14A0.06790.42740.32810.090*
H14B0.03620.50780.18770.090*
H14C−0.07000.45750.29150.090*
Cl20.85328 (7)−0.08027 (7)0.55917 (7)0.0865 (2)
S20.62883 (5)0.62957 (4)−0.02845 (4)0.03972 (13)
O40.50003 (13)0.64573 (15)−0.00526 (16)0.0597 (4)
O50.67100 (15)0.63364 (13)−0.14372 (12)0.0542 (4)
O60.61855 (16)0.51670 (14)0.24179 (13)0.0603 (4)
N20.68281 (15)0.48852 (14)0.07786 (14)0.0375 (4)
H2N0.7126 (18)0.4425 (18)0.0476 (18)0.045*
C150.70542 (18)0.73952 (17)−0.00952 (16)0.0384 (4)
C160.8319 (2)0.75339 (19)−0.03724 (19)0.0491 (5)
C170.8810 (3)0.8448 (2)−0.0200 (2)0.0676 (7)
H170.96490.8566−0.03630.081*
C180.8085 (3)0.9179 (2)0.0206 (2)0.0729 (8)
H180.84420.97830.03070.087*
C190.6851 (3)0.9033 (2)0.0461 (2)0.0646 (7)
H190.63690.95390.07270.077*
C200.6324 (2)0.81276 (19)0.03204 (19)0.0490 (5)
H200.54860.80100.05030.059*
C210.66464 (18)0.44628 (18)0.20434 (17)0.0388 (4)
C220.71053 (17)0.31356 (17)0.28858 (17)0.0382 (4)
C230.7281 (2)0.22033 (19)0.25341 (19)0.0502 (5)
H230.71120.23960.17330.060*
C240.7706 (2)0.0992 (2)0.3372 (2)0.0589 (6)
H240.78140.03650.31410.071*
C250.7969 (2)0.0719 (2)0.4549 (2)0.0535 (5)
C260.7777 (2)0.1624 (2)0.4918 (2)0.0599 (6)
H260.79460.14240.57210.072*
C270.7332 (2)0.2826 (2)0.40918 (19)0.0506 (5)
H270.71820.34340.43450.061*
C280.9158 (2)0.6772 (3)−0.0839 (3)0.0725 (7)
H28A0.89940.5893−0.03500.087*
H28B1.00020.6877−0.07680.087*
H28C0.90120.7063−0.16960.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1194 (6)0.0570 (4)0.0559 (4)0.0228 (4)−0.0283 (4)−0.0077 (3)
S10.0389 (3)0.0364 (2)0.0317 (2)0.00455 (18)0.00168 (17)−0.01557 (19)
O10.0541 (9)0.0564 (9)0.0314 (7)0.0137 (7)−0.0049 (6)−0.0217 (6)
O20.0472 (8)0.0416 (8)0.0613 (9)−0.0045 (6)0.0141 (7)−0.0218 (7)
O30.0675 (10)0.0513 (9)0.0521 (9)0.0094 (7)−0.0155 (7)−0.0365 (7)
N10.0461 (9)0.0364 (8)0.0328 (8)0.0075 (7)−0.0056 (6)−0.0207 (7)
C10.0356 (10)0.0425 (10)0.0336 (9)0.0042 (8)0.0009 (7)−0.0188 (8)
C20.0475 (12)0.0581 (13)0.0498 (12)−0.0063 (10)0.0060 (9)−0.0283 (11)
C30.0473 (14)0.0861 (19)0.0768 (17)−0.0161 (13)0.0226 (12)−0.0437 (15)
C40.0531 (15)0.094 (2)0.0835 (19)0.0027 (14)0.0197 (13)−0.0554 (17)
C50.0569 (14)0.0690 (16)0.0717 (16)0.0097 (12)0.0038 (12)−0.0474 (14)
C60.0444 (11)0.0486 (12)0.0504 (12)0.0027 (9)0.0010 (9)−0.0274 (10)
C70.0365 (10)0.0413 (10)0.0361 (9)−0.0020 (8)−0.0026 (7)−0.0240 (8)
C80.0357 (9)0.0392 (10)0.0304 (9)−0.0024 (7)0.0000 (7)−0.0179 (8)
C90.0604 (13)0.0429 (11)0.0298 (9)0.0047 (9)−0.0080 (8)−0.0190 (9)
C100.0759 (16)0.0412 (11)0.0418 (11)0.0081 (10)−0.0082 (10)−0.0206 (9)
C110.0587 (13)0.0463 (12)0.0335 (10)0.0056 (10)−0.0066 (9)−0.0102 (9)
C120.0549 (13)0.0611 (13)0.0312 (10)−0.0055 (10)−0.0077 (9)−0.0179 (10)
C130.0459 (11)0.0487 (11)0.0348 (10)−0.0066 (9)−0.0017 (8)−0.0230 (9)
C140.0712 (17)0.0717 (17)0.093 (2)−0.0250 (14)0.0215 (15)−0.0486 (16)
Cl20.0881 (5)0.0596 (4)0.0751 (5)0.0108 (3)−0.0196 (4)−0.0047 (3)
S20.0506 (3)0.0371 (3)0.0370 (3)0.0045 (2)−0.0112 (2)−0.0221 (2)
O40.0473 (9)0.0643 (10)0.0845 (11)0.0069 (7)−0.0177 (8)−0.0489 (9)
O50.0895 (12)0.0437 (8)0.0333 (7)0.0062 (7)−0.0142 (7)−0.0218 (6)
O60.0961 (12)0.0468 (9)0.0420 (8)0.0014 (8)0.0093 (8)−0.0278 (7)
N20.0517 (10)0.0327 (8)0.0314 (8)0.0000 (7)−0.0002 (7)−0.0190 (7)
C150.0542 (12)0.0303 (9)0.0294 (9)0.0001 (8)−0.0093 (8)−0.0130 (8)
C160.0551 (13)0.0415 (11)0.0432 (11)−0.0033 (9)−0.0086 (9)−0.0139 (9)
C170.0730 (17)0.0552 (14)0.0662 (16)−0.0197 (12)−0.0104 (12)−0.0193 (13)
C180.116 (2)0.0456 (14)0.0595 (15)−0.0268 (15)−0.0114 (15)−0.0223 (12)
C190.107 (2)0.0414 (12)0.0523 (13)−0.0113 (13)0.0004 (13)−0.0275 (11)
C200.0669 (14)0.0397 (11)0.0411 (11)−0.0020 (9)−0.0023 (9)−0.0206 (9)
C210.0483 (11)0.0390 (10)0.0339 (9)−0.0080 (8)0.0036 (8)−0.0214 (8)
C220.0433 (11)0.0386 (10)0.0328 (9)−0.0092 (8)0.0045 (8)−0.0175 (8)
C230.0733 (15)0.0413 (11)0.0341 (10)−0.0016 (10)0.0005 (9)−0.0179 (9)
C240.0786 (17)0.0448 (12)0.0494 (13)0.0030 (11)0.0024 (11)−0.0221 (10)
C250.0501 (13)0.0458 (12)0.0489 (12)−0.0008 (10)−0.0045 (9)−0.0112 (10)
C260.0701 (16)0.0637 (15)0.0389 (11)−0.0127 (12)−0.0121 (10)−0.0166 (11)
C270.0650 (14)0.0499 (12)0.0412 (11)−0.0098 (10)−0.0029 (10)−0.0245 (10)
C280.0545 (15)0.0732 (18)0.0840 (19)0.0025 (13)0.0013 (13)−0.0359 (15)

Geometric parameters (Å, °)

Cl1—C111.741 (2)Cl2—C251.742 (2)
S1—O21.4234 (15)S2—O41.4227 (15)
S1—O11.4350 (14)S2—O51.4333 (14)
S1—N11.6460 (16)S2—N21.6543 (16)
S1—C11.7674 (17)S2—C151.7629 (19)
O3—C71.212 (2)O6—C211.208 (2)
N1—C71.387 (2)N2—C211.384 (2)
N1—H1N0.823 (14)N2—H2N0.840 (15)
C1—C61.389 (3)C15—C201.387 (3)
C1—C21.395 (3)C15—C161.398 (3)
C2—C31.396 (3)C16—C171.393 (3)
C2—C141.502 (3)C16—C281.512 (3)
C3—C41.365 (4)C17—C181.375 (4)
C3—H30.9300C17—H170.9300
C4—C51.372 (3)C18—C191.364 (4)
C4—H40.9300C18—H180.9300
C5—C61.379 (3)C19—C201.381 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.486 (3)C21—C221.490 (3)
C8—C131.389 (2)C22—C271.385 (3)
C8—C91.391 (3)C22—C231.391 (3)
C9—C101.378 (3)C23—C241.381 (3)
C9—H90.9300C23—H230.9300
C10—C111.377 (3)C24—C251.375 (3)
C10—H100.9300C24—H240.9300
C11—C121.374 (3)C25—C261.375 (3)
C12—C131.375 (3)C26—C271.377 (3)
C12—H120.9300C26—H260.9300
C13—H130.9300C27—H270.9300
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O2—S1—O1118.58 (9)O4—S2—O5118.63 (9)
O2—S1—N1110.72 (9)O4—S2—N2110.03 (9)
O1—S1—N1103.77 (8)O5—S2—N2103.34 (8)
O2—S1—C1108.12 (9)O4—S2—C15108.98 (9)
O1—S1—C1109.66 (9)O5—S2—C15109.55 (9)
N1—S1—C1105.17 (8)N2—S2—C15105.45 (8)
C7—N1—S1122.68 (12)C21—N2—S2122.47 (13)
C7—N1—H1N124.9 (15)C21—N2—H2N123.9 (14)
S1—N1—H1N112.2 (15)S2—N2—H2N113.1 (14)
C6—C1—C2121.90 (18)C20—C15—C16122.23 (18)
C6—C1—S1115.49 (15)C20—C15—S2116.02 (16)
C2—C1—S1122.59 (15)C16—C15—S2121.74 (15)
C1—C2—C3116.0 (2)C17—C16—C15116.1 (2)
C1—C2—C14124.48 (19)C17—C16—C28119.3 (2)
C3—C2—C14119.5 (2)C15—C16—C28124.58 (19)
C4—C3—C2122.5 (2)C18—C17—C16121.7 (2)
C4—C3—H3118.7C18—C17—H17119.2
C2—C3—H3118.7C16—C17—H17119.2
C3—C4—C5120.4 (2)C19—C18—C17121.1 (2)
C3—C4—H4119.8C19—C18—H18119.4
C5—C4—H4119.8C17—C18—H18119.4
C4—C5—C6119.5 (2)C18—C19—C20119.4 (2)
C4—C5—H5120.3C18—C19—H19120.3
C6—C5—H5120.3C20—C19—H19120.3
C5—C6—C1119.7 (2)C19—C20—C15119.4 (2)
C5—C6—H6120.1C19—C20—H20120.3
C1—C6—H6120.1C15—C20—H20120.3
O3—C7—N1120.10 (17)O6—C21—N2120.58 (18)
O3—C7—C8122.85 (16)O6—C21—C22123.14 (16)
N1—C7—C8117.02 (14)N2—C21—C22116.21 (15)
C13—C8—C9118.88 (17)C27—C22—C23119.24 (19)
C13—C8—C7117.39 (16)C27—C22—C21117.08 (17)
C9—C8—C7123.69 (16)C23—C22—C21123.65 (17)
C10—C9—C8120.43 (18)C24—C23—C22120.20 (19)
C10—C9—H9119.8C24—C23—H23119.9
C8—C9—H9119.8C22—C23—H23119.9
C11—C10—C9119.27 (19)C25—C24—C23119.5 (2)
C11—C10—H10120.4C25—C24—H24120.3
C9—C10—H10120.4C23—C24—H24120.3
C12—C11—C10121.47 (19)C24—C25—C26120.9 (2)
C12—C11—Cl1119.62 (16)C24—C25—Cl2119.30 (18)
C10—C11—Cl1118.90 (17)C26—C25—Cl2119.76 (18)
C11—C12—C13119.00 (18)C25—C26—C27119.7 (2)
C11—C12—H12120.5C25—C26—H26120.2
C13—C12—H12120.5C27—C26—H26120.2
C12—C13—C8120.93 (18)C26—C27—C22120.4 (2)
C12—C13—H13119.5C26—C27—H27119.8
C8—C13—H13119.5C22—C27—H27119.8
C2—C14—H14A109.5C16—C28—H28A109.5
C2—C14—H14B109.5C16—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C2—C14—H14C109.5C16—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O2—S1—N1—C762.39 (16)O4—S2—N2—C21−53.60 (17)
O1—S1—N1—C7−169.35 (14)O5—S2—N2—C21178.78 (15)
C1—S1—N1—C7−54.17 (17)C15—S2—N2—C2163.79 (17)
O2—S1—C1—C62.61 (18)O4—S2—C15—C204.60 (18)
O1—S1—C1—C6−128.04 (15)O5—S2—C15—C20135.89 (15)
N1—S1—C1—C6120.93 (16)N2—S2—C15—C20−113.49 (15)
O2—S1—C1—C2−178.77 (17)O4—S2—C15—C16−174.18 (15)
O1—S1—C1—C250.57 (19)O5—S2—C15—C16−42.90 (18)
N1—S1—C1—C2−60.45 (18)N2—S2—C15—C1667.72 (17)
C6—C1—C2—C31.0 (3)C20—C15—C16—C170.4 (3)
S1—C1—C2—C3−177.57 (18)S2—C15—C16—C17179.11 (16)
C6—C1—C2—C14−178.7 (2)C20—C15—C16—C28−179.4 (2)
S1—C1—C2—C142.7 (3)S2—C15—C16—C28−0.7 (3)
C1—C2—C3—C4−0.5 (4)C15—C16—C17—C18−0.8 (3)
C14—C2—C3—C4179.3 (3)C28—C16—C17—C18179.1 (2)
C2—C3—C4—C5−0.2 (5)C16—C17—C18—C190.3 (4)
C3—C4—C5—C60.5 (4)C17—C18—C19—C200.6 (4)
C4—C5—C6—C10.0 (4)C18—C19—C20—C15−1.0 (3)
C2—C1—C6—C5−0.8 (3)C16—C15—C20—C190.4 (3)
S1—C1—C6—C5177.85 (17)S2—C15—C20—C19−178.33 (16)
S1—N1—C7—O30.2 (3)S2—N2—C21—O6−7.4 (3)
S1—N1—C7—C8178.24 (12)S2—N2—C21—C22175.53 (13)
O3—C7—C8—C13−10.8 (3)O6—C21—C22—C27−18.8 (3)
N1—C7—C8—C13171.28 (16)N2—C21—C22—C27158.22 (18)
O3—C7—C8—C9166.76 (19)O6—C21—C22—C23159.5 (2)
N1—C7—C8—C9−11.2 (3)N2—C21—C22—C23−23.6 (3)
C13—C8—C9—C100.6 (3)C27—C22—C23—C24−1.6 (3)
C7—C8—C9—C10−176.92 (18)C21—C22—C23—C24−179.78 (19)
C8—C9—C10—C11−1.1 (3)C22—C23—C24—C25−0.9 (3)
C9—C10—C11—C120.3 (3)C23—C24—C25—C262.2 (3)
C9—C10—C11—Cl1−179.44 (17)C23—C24—C25—Cl2−178.80 (17)
C10—C11—C12—C131.0 (3)C24—C25—C26—C27−1.0 (3)
Cl1—C11—C12—C13−179.22 (15)Cl2—C25—C26—C27179.98 (17)
C11—C12—C13—C8−1.6 (3)C25—C26—C27—C22−1.5 (3)
C9—C8—C13—C120.8 (3)C23—C22—C27—C262.8 (3)
C7—C8—C13—C12178.45 (17)C21—C22—C27—C26−178.91 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.82 (1)2.13 (2)2.937 (2)168 (2)
N2—H2N···O1i0.84 (2)2.19 (2)3.0195 (19)171 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2041).

References

  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o327. [PMC free article] [PubMed]
  • Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o766. [PMC free article] [PubMed]
  • Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1024. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography