PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2037.
Published online 2010 July 17. doi:  10.1107/S1600536810027339
PMCID: PMC3007371

1-(3-tert-Butyl-4-hy­droxy­phen­yl)ethanone

Abstract

The title compound, C12H16O2, is approximately planar (r.m.s. deviation = 0.030 Å), apart from two methyl groups of the tert-butyl unit [deviations of the C atoms = 1.140 (2) and −1.367 (1) Å]. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into hexa­meric rings with R 6 6(48) graph-set motifs.

Related literature

For details of the biological activity of the PAR-1 antagonist, see: Chackalamannil (2006 [triangle]); Shimomura et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2037-scheme1.jpg

Experimental

Crystal data

  • C12H16O2
  • M r = 192.25
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-o2037-efi1.jpg
  • a = 24.019 (3) Å
  • c = 9.999 (2) Å
  • V = 4995.8 (14) Å3
  • Z = 18
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.14 mm

Data collection

  • Rigaku Saturn CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.985, T max = 0.989
  • 12180 measured reflections
  • 1950 independent reflections
  • 1733 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.03
  • 1950 reflections
  • 133 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810027339/hb5546sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027339/hb5546Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

PAR-1 antagonist is a kind of new anti-platelet agents in the antithrombotic area for the treat of artery coronary syndrome (Chackalamannil, 2006). The title compound is prepared when the well established PAR-1 antagonist E-5555 was synthesized as positive control during the development of our own PAR-1 antagonists (Shimomura et al., 2006).

In title compound, C12H16O2, bond lengths are normal ((Allen et al., 1987)). Intermolecular interactions O—H···O hydrogen bonds link the moleculars into hexamer.

Experimental

A dried 500-ml round-bottomed flask was charged with 21.33 g (0.160 mol, 1.2 eq) of anhydrous aluminium chloride and 400 ml of dried toluene, and the resulting yellow slurry was stirred and cooled to -35°C followed by dropwise addition of 20.0 g (0.133 mol, 1.0 eq) of 2-(tert-butyl)phenol dissolved in 20 ml of dried toluene. To the yellow clear solution obtained above was added dropwise 12.56 g (0.160 mol, 1.2 eq) of acetyl chloride dissolved in 20 ml of dried toluene, and after addition the resulting mixture (a yellow clear solution) was stirred at this temperature until all the starting material was consumed almost completely as indicated by TLC analysis (typical 2–3 h). The reaction mixture was slowly poured into 500 ml of stirred ice-water with great care, and the resulting mixture was stirred. The organic phase was separated and the aqueous phase was exacted with three 100-ml portions of ethyl acetate. The combined exacts were washed with brine to pH = 7, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude product as colorless crystals, which was triturated with ethyl acetate/petroleum ether (1/30) to afford the pure product as colorless crystals. Colourless blocks of (I) were obtained via slow evaporation at room temperature of a solution of the pure title compound in ethyl acetate/petroleum ether (1/30).

Refinement

All H atoms were found on difference maps, with C—H = 0.95 or 0.98 and O—H = 0.84 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl H atoms and 1.5Ueq(C, O) for the methyl and hydroxy H atoms.

Figures

Fig. 1.
View of (I), with displacement ellipsoids drawn at the 40% probability level.
Fig. 2.
View of the hexameric ring in the crystal of (I).

Crystal data

C12H16O2Dx = 1.150 Mg m3
Mr = 192.25Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5019 reflections
Hall symbol: -R 3θ = 2.3–27.9°
a = 24.019 (3) ŵ = 0.08 mm1
c = 9.999 (2) ÅT = 113 K
V = 4995.8 (14) Å3Block, colorless
Z = 180.20 × 0.18 × 0.14 mm
F(000) = 1872

Data collection

Rigaku Saturn CCD diffractometer1950 independent reflections
Radiation source: rotating anode1733 reflections with I > 2σ(I)
confocalRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω and [var phi] scansh = −21→28
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −28→28
Tmin = 0.985, Tmax = 0.989l = −11→11
12180 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.0723P)2 + 1.6812P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1950 reflectionsΔρmax = 0.24 e Å3
133 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.57494 (4)0.80946 (4)0.95585 (9)0.0304 (3)
H10.60490.84700.97160.046*
O20.72860 (4)0.66048 (4)0.99295 (9)0.0296 (3)
C10.59747 (6)0.76811 (5)0.96507 (12)0.0230 (3)
C20.66314 (6)0.79128 (5)0.98477 (12)0.0248 (3)
H20.69180.83620.99240.030*
C30.68665 (6)0.74960 (6)0.99315 (11)0.0241 (3)
H30.73150.76581.00360.029*
C40.64445 (5)0.68348 (5)0.98621 (11)0.0215 (3)
C50.57896 (5)0.66128 (5)0.96739 (11)0.0214 (3)
H50.55040.61620.96390.026*
C60.55354 (5)0.70158 (5)0.95352 (11)0.0213 (3)
C70.48199 (6)0.67589 (6)0.92360 (13)0.0272 (3)
C80.45154 (6)0.69730 (7)1.03216 (15)0.0386 (4)
H8A0.45880.68401.12010.058*
H8B0.40520.67731.01590.058*
H8C0.47110.74421.02990.058*
C90.47547 (7)0.70091 (7)0.78650 (14)0.0395 (4)
H9A0.49800.74800.78790.059*
H9B0.42990.68430.76660.059*
H9C0.49430.68640.71750.059*
C100.44439 (6)0.60217 (6)0.91906 (15)0.0373 (4)
H10A0.46220.58710.84890.056*
H10B0.39910.58720.89970.056*
H10C0.44790.58511.00570.056*
C110.67018 (6)0.63918 (6)0.99456 (11)0.0236 (3)
C120.62460 (6)0.56802 (6)1.00527 (13)0.0297 (3)
H12A0.64910.54591.01910.045*
H12B0.59950.55240.92270.045*
H12C0.59550.55931.08110.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0294 (5)0.0171 (4)0.0472 (6)0.0134 (4)−0.0021 (4)0.0000 (4)
O20.0260 (5)0.0321 (5)0.0356 (5)0.0182 (4)−0.0016 (4)0.0001 (4)
C10.0287 (7)0.0206 (6)0.0224 (6)0.0144 (5)0.0003 (5)0.0014 (5)
C20.0263 (6)0.0177 (6)0.0270 (6)0.0083 (5)−0.0023 (5)−0.0010 (5)
C30.0223 (6)0.0261 (6)0.0230 (6)0.0113 (5)−0.0026 (5)−0.0003 (5)
C40.0251 (6)0.0224 (6)0.0186 (6)0.0131 (5)−0.0005 (4)0.0003 (4)
C50.0249 (6)0.0184 (6)0.0210 (6)0.0109 (5)0.0003 (5)0.0004 (4)
C60.0240 (6)0.0200 (6)0.0204 (6)0.0115 (5)0.0008 (5)0.0002 (4)
C70.0230 (6)0.0218 (6)0.0385 (7)0.0126 (5)−0.0013 (5)−0.0007 (5)
C80.0294 (7)0.0303 (7)0.0577 (9)0.0163 (6)0.0115 (6)0.0026 (6)
C90.0362 (8)0.0395 (8)0.0461 (8)0.0215 (7)−0.0152 (6)−0.0038 (6)
C100.0220 (7)0.0252 (7)0.0626 (9)0.0102 (6)−0.0031 (6)−0.0050 (6)
C110.0271 (7)0.0288 (7)0.0188 (6)0.0169 (5)−0.0015 (5)−0.0003 (5)
C120.0310 (7)0.0257 (7)0.0385 (7)0.0188 (6)−0.0017 (5)0.0013 (5)

Geometric parameters (Å, °)

O1—C11.3512 (14)C7—C101.5343 (17)
O1—H10.8400C7—C91.5359 (19)
O2—C111.2299 (14)C8—H8A0.9800
C1—C21.3995 (17)C8—H8B0.9800
C1—C61.4121 (16)C8—H8C0.9800
C2—C31.3761 (17)C9—H9A0.9800
C2—H20.9500C9—H9B0.9800
C3—C41.3944 (17)C9—H9C0.9800
C3—H30.9500C10—H10A0.9800
C4—C51.3983 (16)C10—H10B0.9800
C4—C111.4762 (16)C10—H10C0.9800
C5—C61.3857 (16)C11—C121.5034 (17)
C5—H50.9500C12—H12A0.9800
C6—C71.5372 (16)C12—H12B0.9800
C7—C81.5342 (18)C12—H12C0.9800
C1—O1—H1109.5C7—C8—H8B109.5
O1—C1—C2120.22 (10)H8A—C8—H8B109.5
O1—C1—C6118.61 (10)C7—C8—H8C109.5
C2—C1—C6121.16 (10)H8A—C8—H8C109.5
C3—C2—C1120.68 (10)H8B—C8—H8C109.5
C3—C2—H2119.7C7—C9—H9A109.5
C1—C2—H2119.7C7—C9—H9B109.5
C2—C3—C4119.76 (10)H9A—C9—H9B109.5
C2—C3—H3120.1C7—C9—H9C109.5
C4—C3—H3120.1H9A—C9—H9C109.5
C3—C4—C5118.66 (10)H9B—C9—H9C109.5
C3—C4—C11119.35 (10)C7—C10—H10A109.5
C5—C4—C11121.96 (10)C7—C10—H10B109.5
C6—C5—C4123.49 (10)H10A—C10—H10B109.5
C6—C5—H5118.3C7—C10—H10C109.5
C4—C5—H5118.3H10A—C10—H10C109.5
C5—C6—C1116.18 (10)H10B—C10—H10C109.5
C5—C6—C7122.26 (10)O2—C11—C4120.07 (11)
C1—C6—C7121.54 (10)O2—C11—C12120.31 (10)
C8—C7—C10107.67 (10)C4—C11—C12119.62 (10)
C8—C7—C9109.96 (11)C11—C12—H12A109.5
C10—C7—C9107.98 (11)C11—C12—H12B109.5
C8—C7—C6110.64 (10)H12A—C12—H12B109.5
C10—C7—C6111.33 (10)C11—C12—H12C109.5
C9—C7—C6109.21 (10)H12A—C12—H12C109.5
C7—C8—H8A109.5H12B—C12—H12C109.5
O1—C1—C2—C3−179.44 (11)C2—C1—C6—C7−176.33 (11)
C6—C1—C2—C30.13 (18)C5—C6—C7—C8122.54 (12)
C1—C2—C3—C4−2.04 (18)C1—C6—C7—C8−59.10 (15)
C2—C3—C4—C51.59 (17)C5—C6—C7—C102.85 (16)
C2—C3—C4—C11179.67 (10)C1—C6—C7—C10−178.79 (11)
C3—C4—C5—C60.82 (18)C5—C6—C7—C9−116.30 (12)
C11—C4—C5—C6−177.21 (10)C1—C6—C7—C962.07 (14)
C4—C5—C6—C1−2.62 (17)C3—C4—C11—O2−7.86 (17)
C4—C5—C6—C7175.82 (11)C5—C4—C11—O2170.15 (11)
O1—C1—C6—C5−178.30 (10)C3—C4—C11—C12172.03 (10)
C2—C1—C6—C52.13 (17)C5—C4—C11—C12−9.95 (17)
O1—C1—C6—C73.25 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.832.6624 (12)171

Symmetry codes: (i) y, −x+y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5546).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chackalamannil, S. (2006). J. Med. Chem.49, 5389–5403. [PubMed]
  • Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimomura, N., Sasho, M., Kayano, A., Yoshizawa, K., Tsujii, M., Kuroda, H. & Furukawa, K. (2006). US Patent 20060058370.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography