PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m896.
Published online 2010 July 7. doi:  10.1107/S1600536810025249
PMCID: PMC3007369

Diaqua­bis­(4-carb­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ2 N 3,O 4)copper(II) N,N-dimethyl­formamide disolvate

Abstract

In the title complex, [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO, the CuII ion, lying on an inversion center, is six-coordinated in a slightly distorted octa­hedral geometry. Two N atoms and two O atoms from two H2pimda (H3pimda is 2-propyl-1H-4,5-dicarb­oxy­lic acid) ligands are in the equatorial plane. The axial positions are occupied by two O atoms from two water mol­ecules. A two-dimensional supra­molecular network parallel to (001) is constructed by N—H(...)O and O—H(...)O hydrogen bonds. An intra­molecular O—H(...)O hydrogen bond is also observed.

Related literature

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarb­oxy­lic acid, see: Li et al. (2006 [triangle]); Liu et al. (2004 [triangle]); Sun et al. (2005 [triangle]); Zou et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m896-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO
  • M r = 640.11
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m896-efi1.jpg
  • a = 7.2831 (8) Å
  • b = 9.250 (1) Å
  • c = 11.3329 (13) Å
  • α = 75.264 (1)°
  • β = 87.305 (2)°
  • γ = 68.416 (1)°
  • V = 685.68 (13) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.87 mm−1
  • T = 298 K
  • 0.32 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.768, T max = 0.852
  • 3603 measured reflections
  • 2385 independent reflections
  • 2011 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.097
  • S = 1.06
  • 2385 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810025249/hy2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025249/hy2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

Design and synthesis of metal-organic complexes via deliberate selection of metal ions and organic ligands have been one of the most attractive subjects due to their fascinating structures and potential applications in many field. It is well known that ligands containing N and O atoms which are highly accessible to metal ions are good candidates for the design and synthesis. For example, imidazole-4,5-dicarboxylic acid (H3idc) containing N and O coordination sites can be deprotonated to form (H2idc)-, (Hidc)2- and (idc)3- anions at different pH values. H3idc has been widely used to react with metal salts to obtain a series of metal-organic frameworks with different structures and useful properties (Li et al., 2006; Liu et al., 2004; Sun et al., 2005; Zou et al., 2006). Therefore, we chose 2-propyl-imidazole-4,5-dicarboxylic acid (H3pimda) as ligand for the synthesis of fascinating structures and we report a new CuII complex here.

As illustrated in Fig. 1, the asymmetric unit of the title complex comprises one H2pimda ligand, one CuII ion lying on an inversion center, one coordinated water molecule and one solvent DMF molecule. The CuII ion is six-coordinated in a slightly distorted octahedral geometry, formed by two N atoms and two O atoms from two H2pimda ligands in the equatorial plane. The Cu—O bond length with the value of 2.458 (2) Å is somewhat longer than the Cu—N bond with the value of 1.987 (2) Å. The axial positions are occupied by two O atoms from two water molecules [Cu—O = 2.020 (2) Å]. The H2pimda ligand adopts a bidentate mode to chelate the metal atom through one imidazole N atom and one O atom from the protonated carboxyl group. The other carboxyl group is deprotonated, indicated by a difference of the bond lengths. The two imidazole rings are coplanar. The DMF molecules are linked to the H2pimda ligand via N—H···O hydrogen bonds. The two-dimensional supramolecular network is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

A mixture of Cu(NO3)2 (0.5 mmol, 0.05 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of DMF solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Blue crystals were obtained by slow evaporation of the solvent at room temperature.

Refinement

C- and N-bound H atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.86 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atoms of the water molecule and hydroxyl group were located in a difference map and were allowed to ride on the parent atom, with O—H = 0.85 and 0.82 Å and Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms are omitted for clarity. [Symmetry code: (i) 1-x, 1-y, 1-z.]
Fig. 2.
A view of the two-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions. H atoms are omitted for clarity.

Crystal data

[Cu(C8H9N2O4)2(H2O)2]·2C3H7NOZ = 1
Mr = 640.11F(000) = 335
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2831 (8) ÅCell parameters from 1702 reflections
b = 9.250 (1) Åθ = 2.5–25.9°
c = 11.3329 (13) ŵ = 0.87 mm1
α = 75.264 (1)°T = 298 K
β = 87.305 (2)°Cubic, blue
γ = 68.416 (1)°0.32 × 0.21 × 0.19 mm
V = 685.68 (13) Å3

Data collection

Bruker SMART 1000 CCD diffractometer2385 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→7
Tmin = 0.768, Tmax = 0.852k = −10→10
3603 measured reflectionsl = −10→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0414P)2 + 0.548P] where P = (Fo2 + 2Fc2)/3
2385 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.02632 (17)
N10.6271 (3)0.2621 (3)0.5343 (2)0.0251 (5)
N20.7981 (3)0.0045 (3)0.5992 (2)0.0295 (6)
H20.8707−0.08620.64610.035*
N30.1268 (4)0.4896 (3)0.8656 (3)0.0434 (7)
O10.4276 (3)0.4348 (2)0.31460 (19)0.0387 (5)
O20.4952 (3)0.2191 (3)0.24467 (19)0.0422 (6)
H2A0.55730.12210.26870.063*
O30.6933 (4)−0.0740 (3)0.3193 (2)0.0442 (6)
O40.8653 (3)−0.2477 (2)0.4863 (2)0.0398 (5)
O50.2402 (3)0.4858 (2)0.56026 (19)0.0353 (5)
H5A0.21860.40610.54850.042*
H5B0.14120.57010.52930.042*
O60.0414 (4)0.7502 (3)0.7641 (2)0.0568 (7)
C10.5080 (4)0.2896 (3)0.3284 (3)0.0305 (7)
C20.6222 (4)0.1888 (3)0.4434 (3)0.0255 (6)
C30.7286 (4)0.0262 (3)0.4834 (3)0.0265 (6)
C40.7665 (4)−0.1092 (3)0.4254 (3)0.0305 (7)
C50.7356 (4)0.1463 (3)0.6284 (3)0.0289 (7)
C60.7787 (5)0.1646 (4)0.7491 (3)0.0414 (8)
H6A0.73280.27820.74600.050*
H6B0.92080.11990.76590.050*
C70.6827 (7)0.0825 (6)0.8528 (4)0.0694 (12)
H7A0.54140.12400.83360.083*
H7B0.7328−0.03160.85730.083*
C80.7160 (7)0.1037 (5)0.9754 (3)0.0659 (12)
H8A0.84390.02881.00980.099*
H8B0.61590.08451.02820.099*
H8C0.70970.21140.96680.099*
C90.0181 (5)0.6215 (4)0.7857 (3)0.0451 (8)
H9−0.08400.61670.74240.054*
C100.0974 (8)0.3399 (5)0.8779 (4)0.0779 (14)
H10A−0.02120.36050.83220.117*
H10B0.08560.29320.96250.117*
H10C0.20820.26690.84710.117*
C110.2925 (6)0.4885 (5)0.9321 (4)0.0625 (11)
H11A0.41160.44800.89100.094*
H11B0.30490.42071.01340.094*
H11C0.27090.59590.93610.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0281 (3)0.0167 (3)0.0329 (3)−0.0064 (2)−0.0004 (2)−0.0065 (2)
N10.0284 (13)0.0187 (11)0.0282 (13)−0.0084 (10)0.0010 (10)−0.0066 (10)
N20.0300 (14)0.0166 (11)0.0365 (14)−0.0047 (10)−0.0039 (11)−0.0025 (10)
N30.0490 (18)0.0311 (14)0.0453 (17)−0.0112 (13)−0.0017 (13)−0.0060 (12)
O10.0464 (14)0.0227 (11)0.0391 (13)−0.0053 (10)−0.0048 (10)−0.0045 (9)
O20.0540 (15)0.0332 (12)0.0363 (13)−0.0100 (11)−0.0097 (10)−0.0105 (10)
O30.0579 (16)0.0319 (12)0.0443 (14)−0.0110 (11)−0.0031 (12)−0.0194 (10)
O40.0397 (13)0.0185 (11)0.0580 (15)−0.0045 (9)−0.0025 (11)−0.0125 (10)
O50.0289 (11)0.0218 (10)0.0565 (14)−0.0094 (9)0.0037 (10)−0.0123 (9)
O60.0589 (17)0.0316 (13)0.0649 (17)−0.0080 (12)−0.0174 (13)0.0038 (12)
C10.0282 (16)0.0297 (16)0.0334 (17)−0.0103 (13)0.0012 (13)−0.0082 (13)
C20.0263 (15)0.0228 (14)0.0309 (16)−0.0122 (12)0.0038 (12)−0.0086 (12)
C30.0237 (15)0.0227 (14)0.0340 (17)−0.0091 (12)0.0046 (12)−0.0083 (12)
C40.0256 (16)0.0236 (15)0.0445 (19)−0.0096 (13)0.0060 (13)−0.0128 (14)
C50.0304 (16)0.0222 (14)0.0340 (17)−0.0100 (12)−0.0013 (13)−0.0060 (12)
C60.053 (2)0.0267 (16)0.0416 (19)−0.0119 (15)−0.0131 (16)−0.0051 (14)
C70.085 (3)0.094 (3)0.052 (3)−0.050 (3)0.019 (2)−0.035 (2)
C80.079 (3)0.067 (3)0.051 (2)−0.024 (2)0.006 (2)−0.018 (2)
C90.0362 (19)0.047 (2)0.048 (2)−0.0092 (16)−0.0039 (16)−0.0138 (17)
C100.105 (4)0.041 (2)0.094 (3)−0.033 (2)0.015 (3)−0.019 (2)
C110.050 (2)0.058 (2)0.062 (3)−0.0083 (19)−0.0161 (19)0.001 (2)

Geometric parameters (Å, °)

Cu1—N1i1.987 (2)C1—C21.475 (4)
Cu1—N11.987 (2)C2—C31.377 (4)
Cu1—O5i2.020 (2)C3—C41.491 (4)
Cu1—O52.020 (2)C5—C61.481 (4)
Cu1—O12.458 (2)C6—C71.519 (5)
N1—C51.336 (3)C6—H6A0.9700
N1—C21.378 (3)C6—H6B0.9700
N2—C51.344 (3)C7—C81.494 (5)
N2—C31.368 (4)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
N3—C91.315 (4)C8—H8A0.9600
N3—C111.448 (4)C8—H8B0.9600
N3—C101.449 (4)C8—H8C0.9600
O1—C11.222 (3)C9—H90.9300
O2—C11.305 (3)C10—H10A0.9600
O2—H2A0.8200C10—H10B0.9600
O3—C41.253 (4)C10—H10C0.9600
O4—C41.247 (3)C11—H11A0.9600
O5—H5A0.8499C11—H11B0.9600
O5—H5B0.8500C11—H11C0.9600
O6—C91.226 (4)
N1i—Cu1—N1180.00 (6)N1—C5—N2109.4 (2)
N1i—Cu1—O5i91.57 (9)N1—C5—C6127.0 (3)
N1—Cu1—O5i88.44 (9)N2—C5—C6123.6 (3)
N1i—Cu1—O588.43 (9)C5—C6—C7113.2 (3)
N1—Cu1—O591.56 (9)C5—C6—H6A108.9
O5i—Cu1—O5180.0C7—C6—H6A108.9
N1i—Cu1—O1104.94 (8)C5—C6—H6B108.9
N1—Cu1—O175.06 (8)C7—C6—H6B108.9
O5i—Cu1—O192.58 (8)H6A—C6—H6B107.7
O5—Cu1—O187.42 (8)C8—C7—C6114.9 (3)
C5—N1—C2106.6 (2)C8—C7—H7A108.6
C5—N1—Cu1134.39 (19)C6—C7—H7A108.6
C2—N1—Cu1118.83 (18)C8—C7—H7B108.6
C5—N2—C3109.7 (2)C6—C7—H7B108.6
C5—N2—H2125.2H7A—C7—H7B107.5
C3—N2—H2125.2C7—C8—H8A109.5
C9—N3—C11119.9 (3)C7—C8—H8B109.5
C9—N3—C10120.6 (3)H8A—C8—H8B109.5
C11—N3—C10119.1 (3)C7—C8—H8C109.5
C1—O1—Cu1108.15 (18)H8A—C8—H8C109.5
C1—O2—H2A109.5H8B—C8—H8C109.5
Cu1—O5—H5A114.3O6—C9—N3124.8 (3)
Cu1—O5—H5B113.0O6—C9—H9117.6
H5A—O5—H5B107.6N3—C9—H9117.6
O1—C1—O2122.2 (3)N3—C10—H10A109.5
O1—C1—C2119.7 (3)N3—C10—H10B109.5
O2—C1—C2118.1 (2)H10A—C10—H10B109.5
C3—C2—N1109.4 (2)N3—C10—H10C109.5
C3—C2—C1132.5 (3)H10A—C10—H10C109.5
N1—C2—C1118.1 (2)H10B—C10—H10C109.5
N2—C3—C2104.9 (2)N3—C11—H11A109.5
N2—C3—C4122.9 (2)N3—C11—H11B109.5
C2—C3—C4132.2 (3)H11A—C11—H11B109.5
O4—C4—O3125.3 (3)N3—C11—H11C109.5
O4—C4—C3117.8 (3)H11A—C11—H11C109.5
O3—C4—C3116.9 (3)H11B—C11—H11C109.5
O5i—Cu1—N1—C585.3 (3)C5—N2—C3—C4−177.9 (3)
O5—Cu1—N1—C5−94.7 (3)N1—C2—C3—N2−0.5 (3)
O1—Cu1—N1—C5178.4 (3)C1—C2—C3—N2−178.9 (3)
O5i—Cu1—N1—C2−89.3 (2)N1—C2—C3—C4177.8 (3)
O5—Cu1—N1—C290.7 (2)C1—C2—C3—C4−0.7 (5)
O1—Cu1—N1—C23.76 (19)N2—C3—C4—O40.3 (4)
N1i—Cu1—O1—C1177.7 (2)C2—C3—C4—O4−177.7 (3)
N1—Cu1—O1—C1−2.3 (2)N2—C3—C4—O3179.4 (3)
O5i—Cu1—O1—C185.4 (2)C2—C3—C4—O31.4 (5)
O5—Cu1—O1—C1−94.6 (2)C2—N1—C5—N20.1 (3)
Cu1—O1—C1—O2179.8 (2)Cu1—N1—C5—N2−175.00 (19)
Cu1—O1—C1—C20.4 (3)C2—N1—C5—C6−178.0 (3)
C5—N1—C2—C30.3 (3)Cu1—N1—C5—C66.9 (5)
Cu1—N1—C2—C3176.24 (18)C3—N2—C5—N1−0.4 (3)
C5—N1—C2—C1179.0 (2)C3—N2—C5—C6177.8 (3)
Cu1—N1—C2—C1−5.1 (3)N1—C5—C6—C7112.5 (4)
O1—C1—C2—C3−179.0 (3)N2—C5—C6—C7−65.4 (4)
O2—C1—C2—C31.7 (5)C5—C6—C7—C8−177.7 (3)
O1—C1—C2—N12.7 (4)C11—N3—C9—O6−2.4 (6)
O2—C1—C2—N1−176.7 (2)C10—N3—C9—O6−175.2 (4)
C5—N2—C3—C20.5 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O6ii0.861.832.679 (3)167
O2—H2A···O30.821.672.494 (3)177
O5—H5A···O4iii0.851.912.755 (3)172
O5—H5B···O4iv0.852.072.906 (3)167

Symmetry codes: (ii) x+1, y−1, z; (iii) −x+1, −y, −z+1; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2320).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935.
  • Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed.44, 5814–5817. [PubMed]
  • Zou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed.45, 2542–2546. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography