PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1018–m1019.
Published online 2010 July 24. doi:  10.1107/S1600536810029107
PMCID: PMC3007368

catena-Poly[[μ3-hydroxido-tetra-μ2-pyrid­azine-1:2κ4 N:N′;1:3κ2 N:N′;2:3κ2 N:N′-tetrakis(selenocyanato)-1κN,2κN,3κ2 N-trizinc(II)]-μ-cyanido-1:2′κ2 C:N]

Abstract

In the crystal structure of the title compound, [Zn3(NCSe)4(OH)(CN)(C4H4N2)4]n one of the two crystallograph­ically independent zinc(II) cations is coordinated by two terminal N-bonded seleno­cyanato anions and two N atoms of two symmetry-related pyridazine ligands in a trigonal-bipyramidal geometry, while the other zinc(II) cation is coordinated by one terminal N-bonded seleno­cyanato anion, one μ-1,2-cyanido anion and three N atoms of three crystallographically independent pyridazine ligands in a slightly distorted octa­hedral coordination geometry. The zinc(II) atoms are further connected via a μ3-hydroxido anion into trinuclear building blocks. The formula unit consists of three zinc cations, four seleno­cyanato anions, one μ3-hydroxido anion, four pyridazine mol­ecules as well as one cyanido anion. The asymmetric unit contains half of a formula unit. One of the zinc atoms, two seleno­cyanato anions, two pyridazine ligands and the μ3-hydroxido anion are located on a crystallographic mirror plane, whereas the cyanido anion is located on a twofold rotation axis. Therefore, this anion is disordered due to symmetry. The cyanido anions connect the metal centres into polymeric zigzag chains propagating along the a axis.

Related literature

For related μ3-hydroxo Zn coordination, see: Alexiou et al. (2005 [triangle]); Jana et al. (2006 [triangle]). For general background to inorganic–organic coordination polymers based on zinc(II) halides or pseudohalides and N-donor ligands, see: Näther et al. (2007 [triangle]); Bhosekar et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1018-scheme1.jpg

Experimental

Crystal data

  • [Zn3(CNSe)4(OH)(CN)(C4H4N2)4]
  • M r = 979.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1018-efi2.jpg
  • a = 15.6156 (12) Å
  • b = 22.6489 (16) Å
  • c = 8.6626 (5) Å
  • V = 3063.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.12 mm−1
  • T = 170 K
  • 0.16 × 0.12 × 0.06 mm

Data collection

  • STOE IPDS-1 diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008 [triangle]) T min = 0.196, T max = 0.503
  • 22283 measured reflections
  • 3752 independent reflections
  • 3588 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.058
  • S = 1.03
  • 3752 reflections
  • 206 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.65 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1747 Friedel pairs
  • Flack parameter: −0.012 (10)

Data collection: X-AREA (Stoe, 2008 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2010 [triangle]); software used to prepare material for publication: XCIF in SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029107/bt5302sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029107/bt5302Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3–1). We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Comment

Recently, we have investigated inorganic organic coordination polymers based on zinc(II) halides or pseudohalides and N-donor ligands (Näther et al., 2007; Bhosekar et al., 2006). In our ongoing investigation on the synthesis, structures and properties of such compounds based on diamagnetic transition metals, pseudo-halides and N-donor ligands, we have reacted zinc(II) dinitrate, potassium selenocyanate and pyridazine in water. In this reaction single crystals were obtained by accident, which were identified as the title compound by single-crystal X-ray diffraction.

The title compound of composition [Zn3(NCSe)4(OH-)(CN-)(pyridazine)4]n (Fig. 1) represents a polymeric chain, in which trinuclear building units built up of three zinc(II) cations centered by a µ3-hydroxido anion are connected by µ-1,2-cyanido anions. One of the three zinc cations is coordinated by two selenocyanato anions, two N atoms of two pyridazine ligands and one µ3-hydroxido anion in a distorted trigonal bipyramidal coordination environment. The other two zinc(II) cations, are each coordinated by one selenocyanato, one µ-1,2-cyanido and one µ3-hydroxido anion and three N atoms of three pyridazine ligands in a slightly distorted octahedral coordination geometry. The Zn—Npyridazine distances range between 2.174 (3) Å and 2.247 (3) Å, whereas the Zn—Nselenocyanato distances of the terminally N-bonded selenocyanato anions range between 1.985 (5) Å and 2.092 (3) Å. The angles around the trigonally bipyramidally coordinated metal centre range between 113.64 (18) - 130.90 (17)° and 177.39 (16)° (Tab. 1), whereas the angles around the octahedrally coordinated metal centres range between 83.09 (12) - 93.64 (12) and 178.62 (10)° (Tab. 1). The µ3-hydroxido anion coordination of the metal centres is not unusual and is similar to that found in related structures (Alexiou et al., 2005; Jana et al., 2006). The shortest Zn···Zn distances of the trinuclear metal centre amount to 3.4450 (5), whereas the shortest intrachain and interchain Zn···Zn distances amount to 5.2687 (5) and 9.0482 (6), respectively (Fig. 3).

Experimental

Zn(NO3)2x 6H2O was obtained from Merck, KNCSe and pyridazine were obtained from Alfa Aesar. 1 mmol (128 mg) Zn(NO3)2x 6H2O, 2 mmol (288 mg) KNCSe, 2 mmol (160 mg) pyridazine and 3 ml water were reacted in a closed snap-vail without stirring. After the mixture has been standing for several days in the dark at room temperature light-yellow needle like single crystals of the title compound were obtained in a mixture with unknown phases.

Refinement

The O—H hydrogen atom was located in difference map and was refined isotropically. The C—H H atoms were positioned with idealized geometry and were refined using a riding model with Ueq(H) = 1.2 Ueq(C) of the parent atom using C—H = 0.95 Å. Since there is only one atom of the cyanido anion in the asymmetric unit, this anion must be disordered over two equally occupied sites, C and N were refined sharing the same coordinates and the same displacement parameters.

Figures

Fig. 1.
: Crystal structure of the discrete title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i: -x + 3/2, y, z; ii: -x + 1, -y + 1, z.
Fig. 2.
: Crystal structure of the title compound with view onto the polymeric chain along the crystallographic c-axis.
Fig. 3.
: Crystal structure of the title compound with topview onto the crystallographic ab-plane.

Crystal data

[Zn3(CNSe)4(OH)(CN)(C4H4N2)4]F(000) = 1872
Mr = 979.43Dx = 2.123 Mg m3
Orthorhombic, Ama2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2aCell parameters from 8001 reflections
a = 15.6156 (12) Åθ = 2.5–28.1°
b = 22.6489 (16) ŵ = 7.12 mm1
c = 8.6626 (5) ÅT = 170 K
V = 3063.8 (4) Å3Needle, light-yellow
Z = 40.16 × 0.12 × 0.06 mm

Data collection

STOE IPDS-1 diffractometer3752 independent reflections
Radiation source: fine-focus sealed tube3588 reflections with I > 2σ(I)
graphiteRint = 0.049
Phi scansθmax = 28.1°, θmin = 2.5°
Absorption correction: numerical (X-SHAPE and X-RED32 ;Stoe, 2008)h = −20→20
Tmin = 0.196, Tmax = 0.503k = −29→29
22283 measured reflectionsl = −11→11

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024w = 1/[σ2(Fo2) + (0.0346P)2 + 4.6032P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.42 e Å3
3752 reflectionsΔρmin = −0.65 e Å3
206 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00122 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1747 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.012 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.75000.69593 (2)0.31561 (6)0.01454 (11)
Zn20.63959 (2)0.565314 (15)0.35942 (4)0.01401 (9)
O10.75000.61613 (13)0.4136 (4)0.0124 (6)
H10.75000.619 (4)0.500 (12)0.05 (3)*
Se10.75000.70340 (2)−0.25158 (6)0.02447 (12)
C10.75000.6962 (2)−0.0473 (6)0.0211 (10)
N10.75000.6936 (2)0.0866 (6)0.0283 (10)
Se20.75000.89017 (2)0.57363 (7)0.02695 (13)
C20.75000.8214 (2)0.4730 (6)0.0180 (9)
N20.75000.77724 (17)0.4100 (5)0.0209 (9)
Se30.45849 (2)0.591502 (15)0.83059 (4)0.02298 (9)
C30.5344 (2)0.58566 (15)0.6754 (4)0.0198 (7)
N30.58164 (18)0.58100 (13)0.5733 (4)0.0210 (6)
N110.60825 (17)0.69737 (12)0.3112 (4)0.0203 (6)
N120.56988 (17)0.64629 (12)0.2776 (3)0.0161 (5)
C110.4879 (2)0.64663 (16)0.2356 (5)0.0244 (7)
H110.46190.61030.20740.029*
C120.4386 (2)0.69777 (17)0.2312 (6)0.0334 (10)
H120.37990.69640.20260.040*
C130.4770 (2)0.74982 (17)0.2690 (7)0.0410 (12)
H130.44630.78600.26890.049*
C140.5641 (2)0.74755 (16)0.3081 (6)0.0339 (10)
H140.59270.78330.33340.041*
N210.70660 (17)0.48500 (12)0.4454 (3)0.0160 (5)
C210.6652 (2)0.43725 (16)0.4926 (5)0.0242 (7)
H210.60430.43810.49380.029*
C220.7066 (2)0.38574 (17)0.5405 (5)0.0302 (8)
H220.67510.35190.57200.036*
N310.70651 (16)0.55138 (11)0.1423 (3)0.0140 (5)
C310.6645 (2)0.54118 (15)0.0115 (4)0.0198 (6)
H310.60370.54080.01330.024*
C320.7064 (2)0.53091 (16)−0.1289 (4)0.0222 (7)
H320.67500.5242−0.22110.027*
N410.53181 (18)0.51316 (13)0.2907 (4)0.0168 (6)0.50
C410.53181 (18)0.51316 (13)0.2907 (4)0.0168 (6)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0139 (2)0.0139 (2)0.0157 (3)0.0000.0000.00062 (18)
Zn20.00941 (14)0.01595 (16)0.01666 (19)−0.00099 (12)0.00125 (13)−0.00029 (13)
O10.0098 (13)0.0144 (14)0.0130 (17)0.0000.0000.0006 (12)
Se10.0252 (2)0.0320 (3)0.0162 (3)0.0000.000−0.00013 (19)
C10.016 (2)0.020 (2)0.026 (3)0.0000.0000.0012 (19)
N10.026 (2)0.037 (3)0.021 (3)0.0000.000−0.0007 (19)
Se20.0326 (3)0.0148 (2)0.0334 (3)0.0000.000−0.0050 (2)
C20.015 (2)0.021 (2)0.017 (2)0.0000.0000.0075 (18)
N20.0187 (19)0.0137 (18)0.030 (2)0.0000.000−0.0081 (17)
Se30.02313 (16)0.02491 (16)0.02089 (19)0.00440 (12)0.00737 (13)0.00093 (13)
C30.0202 (16)0.0189 (16)0.0204 (19)−0.0006 (12)−0.0082 (13)−0.0005 (12)
N30.0187 (13)0.0253 (14)0.0190 (15)0.0008 (11)0.0058 (11)0.0006 (11)
N110.0139 (12)0.0160 (12)0.0309 (17)0.0008 (9)−0.0026 (11)0.0011 (11)
N120.0154 (12)0.0156 (12)0.0172 (15)−0.0007 (10)−0.0005 (9)0.0008 (10)
C110.0198 (16)0.0213 (16)0.032 (2)−0.0004 (13)−0.0060 (14)−0.0014 (14)
C120.0176 (15)0.0245 (19)0.058 (3)0.0035 (14)−0.0155 (17)0.0010 (18)
C130.0191 (18)0.0224 (18)0.081 (4)0.0023 (14)−0.018 (2)−0.003 (2)
C140.0172 (16)0.0157 (15)0.069 (3)0.0037 (12)−0.0092 (17)−0.0025 (17)
N210.0128 (13)0.0180 (13)0.0174 (16)0.0004 (10)0.0005 (10)0.0028 (10)
C210.0179 (15)0.0276 (18)0.027 (2)−0.0052 (13)0.0014 (14)0.0071 (14)
C220.0307 (19)0.0229 (17)0.037 (2)−0.0041 (15)−0.0013 (17)0.0107 (16)
N310.0092 (12)0.0165 (13)0.0162 (14)0.0003 (10)0.0006 (10)0.0003 (9)
C310.0162 (14)0.0232 (16)0.0199 (18)0.0004 (12)−0.0038 (13)0.0023 (12)
C320.0266 (17)0.0265 (16)0.0133 (17)−0.0002 (13)−0.0041 (13)−0.0006 (12)
N410.0131 (12)0.0169 (13)0.0203 (17)0.0001 (10)−0.0031 (11)−0.0012 (11)
C410.0131 (12)0.0169 (13)0.0203 (17)0.0001 (10)−0.0031 (11)−0.0012 (11)

Geometric parameters (Å, °)

Zn1—N11.985 (5)C11—C121.392 (5)
Zn1—O11.997 (3)C11—H110.9500
Zn1—N22.015 (4)C12—C131.363 (5)
Zn1—N11i2.214 (3)C12—H120.9500
Zn1—N112.214 (3)C13—C141.402 (5)
Zn2—N32.092 (3)C13—H130.9500
Zn2—O12.1254 (19)C14—H140.9500
Zn2—N412.141 (3)N21—C211.325 (4)
Zn2—N312.174 (3)N21—N21i1.355 (5)
Zn2—N212.227 (3)C21—C221.398 (5)
Zn2—N122.247 (3)C21—H210.9500
O1—Zn2i2.1254 (19)C22—C22i1.355 (8)
O1—H10.75 (10)C22—H220.9500
Se1—C11.777 (5)N31—C311.330 (4)
C1—N11.161 (7)N31—N31i1.358 (5)
Se2—C21.784 (5)C31—C321.400 (5)
C2—N21.140 (7)C31—H310.9500
Se3—C31.797 (4)C32—C32i1.363 (7)
C3—N31.157 (5)C32—H320.9500
N11—C141.330 (4)N41—C41ii1.159 (6)
N11—N121.335 (4)N41—N41ii1.159 (6)
N12—C111.331 (4)
N1—Zn1—O1113.64 (18)C14—N11—Zn1122.1 (2)
N1—Zn1—N2115.5 (2)N12—N11—Zn1116.09 (19)
O1—Zn1—N2130.90 (17)C11—N12—N11119.1 (3)
N1—Zn1—N11i89.03 (9)C11—N12—Zn2123.8 (2)
O1—Zn1—N11i91.19 (7)N11—N12—Zn2114.92 (19)
N2—Zn1—N11i89.64 (7)N12—C11—C12123.0 (3)
N1—Zn1—N1189.03 (9)N12—C11—H11118.5
O1—Zn1—N1191.19 (7)C12—C11—H11118.5
N2—Zn1—N1189.64 (7)C13—C12—C11118.0 (3)
N11i—Zn1—N11177.39 (16)C13—C12—H12121.0
N3—Zn2—O193.64 (12)C11—C12—H12121.0
N3—Zn2—N4189.99 (12)C12—C13—C14117.0 (3)
O1—Zn2—N41176.37 (13)C12—C13—H13121.5
N3—Zn2—N31176.69 (11)C14—C13—H13121.5
O1—Zn2—N3183.09 (12)N11—C14—C13122.6 (3)
N41—Zn2—N3193.28 (11)N11—C14—H14118.7
N3—Zn2—N2192.62 (11)C13—C14—H14118.7
O1—Zn2—N2189.28 (10)C21—N21—N21i119.2 (2)
N41—Zn2—N2190.67 (11)C21—N21—Zn2122.7 (2)
N31—Zn2—N2186.85 (10)N21i—N21—Zn2118.03 (7)
N3—Zn2—N1286.05 (11)N21—C21—C22123.2 (3)
O1—Zn2—N1291.18 (10)N21—C21—H21118.4
N41—Zn2—N1288.96 (11)C22—C21—H21118.4
N31—Zn2—N1294.50 (10)C22i—C22—C21117.6 (2)
N21—Zn2—N12178.62 (10)C22i—C22—H22121.2
Zn1—O1—Zn2113.35 (11)C21—C22—H22121.2
Zn1—O1—Zn2i113.35 (11)C31—N31—N31i119.55 (18)
Zn2—O1—Zn2i108.42 (14)C31—N31—Zn2121.7 (2)
Zn1—O1—H1110 (6)N31i—N31—Zn2118.72 (7)
Zn2—O1—H1106 (3)N31—C31—C32122.6 (3)
Zn2i—O1—H1106 (3)N31—C31—H31118.7
N1—C1—Se1177.7 (5)C32—C31—H31118.7
C1—N1—Zn1175.6 (5)C32i—C32—C31117.84 (19)
N2—C2—Se2179.4 (4)C32i—C32—H32121.1
C2—N2—Zn1175.3 (4)C31—C32—H32121.1
N3—C3—Se3178.2 (3)C41ii—N41—N41ii0.0 (4)
C3—N3—Zn2165.6 (3)C41ii—N41—Zn2163.36 (12)
C14—N11—N12120.3 (3)N41ii—N41—Zn2163.36 (12)

Symmetry codes: (i) −x+3/2, y, z; (ii) −x+1, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5302).

References

  • Alexiou, M., Katsoulakou, E., Dendrinou-Samara, C., Raptopoulou, C. P., Psycharis, V., Manessi-Zoupa, E., Perlepes, S. P. & Kessissoglou, D. P. (2005). Eur. J. Inorg. Chem. pp. 1964–1968.
  • Bhosekar, G., Jess, I. & Näther, C. (2006). Acta Cryst. E62, m1859–m1860.
  • Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jana, S., Fröhlich, R. & Mitzel, N. W. (2006). Chem. Eur. J.12, 592–599. [PubMed]
  • Näther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353–5359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography