PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1003–m1004.
Published online 2010 July 24. doi:  10.1107/S1600536810028497
PMCID: PMC3007367

Bis(μ-naphthalene-1,8-dicarboxyl­ato-κ2 O 1:O 8)bis­[aqua­bis­(N,N′-dimethyl­formamide-κO)copper(II)]

Abstract

In the centrosymmetric dinuclear title complex, [Cu2(C12H6O4)2(C3H7NO)4(H2O)2], the coordination environment of each Cu(II) atom displays a distorted CuO5 square-pyramidal geometry, which is formed by two carboxyl­ate O atoms of two μ-1,8-nap ligands (1,8-nap is naphthalene-1,8-dicarboxyl­ate), two O atoms of two DMF (DMF is N,N′-dimethyl­formamide) and one coordinated water mol­ecule. The Cu—O distances involving the four O atoms in the square plane are in the range 1.9501 (11)–1.9677 (11) Å, with the Cu atom lying nearly in the plane [deviation = 0.0726 (2) Å]. The axial O atom occupies the peak position with a Cu—O distance of 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Each 1,8-nap ligand acts as bridge, linking two CuII atoms into a dinuclear structure. Inter­molecular O—H(...)O and C—H(...)O hydrogen-bonding inter­actions consolidate the structure.

Related literature

For the coordination modes of the 1,8-nap ligand, see: Wen et al. (2007 [triangle], 2008 [triangle]). For related complexes, see: Abourahma et al. (2002 [triangle]); Bencini et al. (2003 [triangle]); Fokin et al. (2004 [triangle]); Sun et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1003-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C12H6O4)2(C3H7NO)4(H2O)2]
  • M r = 883.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1003-efi3.jpg
  • a = 17.7078 (4) Å
  • b = 9.9025 (1) Å
  • c = 23.0393 (5) Å
  • β = 102.249 (2)°
  • V = 3948.00 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 296 K
  • 0.40 × 0.26 × 0.13 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.71, T max = 0.86
  • 29673 measured reflections
  • 4625 independent reflections
  • 4076 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.076
  • S = 1.04
  • 4625 reflections
  • 259 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028497/pv2300sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028497/pv2300Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

It is well-known that appropriate metal and ligand are the two keys for design and construction of metal-organic frameworks. Here we choose 1,8-nap ligand (1,8-nap = naphthalene-1,8-dicarboxylate), due to its unique ability to form stable chelates in diverse coordination modes such as bidentate, meridian and bridging; which have been demonstrated in our previous work (Wen et al., 2008; Wen et al., 2007). Moreover, we select the copper to provide a set of well defined coordination geometry. As a result, we have prepared the title complex, Cu2(1,8-nap)2(DMF)4(H2O)2, (I), a new dinuclear CuII compound based on 1,8-nap ligand.

A perspective view of the molecular structure of (I) is presented in Fig. 1. The coordination environment of each Cu atom displays a distorted CuO5 square pyramidal coordination geometry, which is formed from two carboxylate oxygen atoms of two µ2-1,8-nap ligands, two oxygen atoms of two DMF and one coordinated water molecule; similar to some comlexes reported earlier (Abourahma et al., 2002; Bencini et al., 2003; Fokin et al., 2004; Sun et al., 2009). Four oxygen atoms O2-O3i-O1W-O6 form a square plane (Cu—O distances in ranging 1.9501 (11) - 1.9677 (11) Å), and the Cu1 atom lies in the plane (deviation 0.0726 (2) Å). The fifth oxygen atom O1 is on the peak of square pyramid, and Cu—O distance is 2.885 (12) Å, which is significantly longer than the rest of the Cu—O distances. Both carboxylate groups of the 1,8-nap ligand are deprotonated, and adopt a monodentate coordination mode. As a result, the whole 1,8-nap ligand acts as µ2-bridge linking two CuII atoms to form a sixteen-atoms ring. There are intramolecular hydrogen bonds between uncoordinated O atoms of 1,8-nap ligands and water molecules, O1W···O5, O1W···O4i(details are given in Tab. 1). In addition, weak interactions of the type C—H···O are also present. Such hydrogen-bonding interactions consolidate the dinuclear structure, as depicted in Fig. 2.

Experimental

A mixture of naphthalene-1,8-dicarboxylate anhydride (0.1981 g, 1 mmol), CuCl2.2H2O (0.085 g, 0.5 mmol) and Na2CO3(0.053 g, 0.5 mmol) was dissolved in a mixed solution of DMF-H2O (1:2 v/v, 25 ml) and stirred at 343 K for 2 h. The filtrate was allowed to stand at ambient temperature. Well formed blue crystals suitable for X-ray analysis were obtained after two months (yield 45%, based on Cu).

Refinement

H atoms bonded to C atoms were positioned geometrically and included in the refinement in the riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] and methyl groups were allowed to rotate to fit the electron density [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Water H atoms were located and refined with distance restraints of O—H = 0.85 (2) Å and H···H = 1.35 (2) Å, with displacement parameters set at 1.5Ueq(O).

Figures

Fig. 1.
Perspective view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)-x + 1/2,-y + 3/2,-z + 1]
Fig. 2.
A packing diagram of (I) with the hydrogen-bonding interaction depicted by dash lines.

Crystal data

[Cu2(C12H6O4)2(C3H7NO)4(H2O)2]F(000) = 1832
Mr = 883.83Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9928 reflections
a = 17.7078 (4) Åθ = 2.4–27.7°
b = 9.9025 (1) ŵ = 1.15 mm1
c = 23.0393 (5) ÅT = 296 K
β = 102.249 (2)°Block, blue
V = 3948.00 (13) Å30.40 × 0.26 × 0.13 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer4625 independent reflections
Radiation source: fine-focus sealed tube4076 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.71, Tmax = 0.86k = −12→12
29673 measured reflectionsl = −28→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0415P)2 + 2.4079P] where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.28 e Å3
5 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.124473 (10)0.670966 (18)0.464441 (8)0.03052 (7)
C10.33281 (9)0.85492 (16)0.40975 (7)0.0341 (3)
C20.31963 (10)0.94374 (17)0.35537 (7)0.0395 (4)
C30.38265 (12)1.0098 (2)0.34354 (9)0.0543 (5)
H3A0.42911.00760.37140.065*
C40.37868 (14)1.0808 (2)0.29013 (11)0.0684 (6)
H4A0.42191.12660.28340.082*
C50.31253 (14)1.0826 (2)0.24877 (10)0.0627 (6)
H5A0.31101.12710.21300.075*
C60.24541 (13)1.01821 (18)0.25878 (8)0.0485 (4)
C70.24722 (10)0.95047 (16)0.31396 (7)0.0381 (3)
C80.17617 (14)1.0204 (2)0.21466 (8)0.0568 (5)
H8A0.17521.06540.17910.068*
C90.11186 (13)0.9584 (2)0.22331 (8)0.0571 (5)
H9A0.06800.95540.19290.069*
C100.11117 (11)0.89818 (19)0.27848 (8)0.0460 (4)
H10A0.06600.85830.28460.055*
C110.17582 (10)0.89708 (16)0.32346 (7)0.0367 (3)
C120.16459 (9)0.85435 (16)0.38382 (7)0.0334 (3)
C130.09853 (12)0.4309 (2)0.38365 (9)0.0543 (5)
H13A0.13480.48460.37070.065*
C140.1278 (3)0.2623 (3)0.31590 (17)0.1263 (15)
H14A0.16220.33210.30850.189*
H14B0.09230.24010.27960.189*
H14C0.15720.18360.33100.189*
C150.02931 (19)0.2191 (3)0.37687 (13)0.0902 (9)
H15A0.00550.26320.40550.135*
H15B0.05510.13880.39400.135*
H15C−0.00960.19550.34260.135*
C16−0.03349 (10)0.72571 (17)0.46612 (8)0.0418 (4)
H16A−0.03700.63380.47350.050*
C17−0.16911 (14)0.7426 (3)0.46719 (17)0.0956 (10)
H17A−0.16360.64700.47350.143*
H17B−0.20800.75970.43200.143*
H17C−0.18410.78380.50070.143*
C18−0.09461 (13)0.9433 (2)0.44989 (12)0.0661 (6)
H18A−0.04390.96980.44570.099*
H18B−0.10750.99020.48290.099*
H18C−0.13150.96560.41430.099*
O1W0.22801 (6)0.59540 (12)0.46744 (5)0.0358 (2)
H1WA0.2520 (12)0.641 (2)0.4477 (8)0.054*
H1WB0.2520 (12)0.589 (2)0.5009 (7)0.054*
O10.06739 (7)0.47781 (13)0.42143 (6)0.0511 (3)
O20.02961 (7)0.77247 (12)0.46251 (6)0.0434 (3)
O30.13036 (6)0.74302 (12)0.38655 (5)0.0389 (2)
O40.18619 (7)0.93436 (12)0.42557 (5)0.0407 (3)
O50.30792 (7)0.73769 (11)0.40428 (5)0.0389 (3)
O60.37233 (6)0.90670 (12)0.45727 (5)0.0395 (3)
N10.08503 (14)0.30962 (18)0.35940 (9)0.0687 (5)
N2−0.09595 (8)0.79924 (16)0.46006 (7)0.0458 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02809 (11)0.02933 (11)0.03456 (11)0.00029 (7)0.00758 (7)−0.00087 (7)
C10.0308 (7)0.0369 (8)0.0381 (8)0.0040 (6)0.0154 (6)0.0037 (6)
C20.0456 (9)0.0357 (8)0.0405 (8)0.0005 (7)0.0167 (7)0.0047 (7)
C30.0534 (11)0.0562 (12)0.0563 (11)−0.0080 (9)0.0181 (9)0.0110 (9)
C40.0724 (15)0.0669 (14)0.0723 (15)−0.0164 (12)0.0299 (12)0.0220 (12)
C50.0888 (16)0.0545 (12)0.0502 (11)−0.0057 (11)0.0271 (11)0.0172 (9)
C60.0709 (12)0.0388 (9)0.0386 (9)0.0042 (8)0.0179 (8)0.0068 (7)
C70.0525 (10)0.0301 (7)0.0338 (8)0.0041 (7)0.0137 (7)0.0039 (6)
C80.0837 (15)0.0503 (11)0.0345 (9)0.0080 (10)0.0086 (9)0.0115 (8)
C90.0696 (13)0.0567 (11)0.0391 (10)0.0086 (10)−0.0020 (9)0.0083 (9)
C100.0512 (10)0.0445 (10)0.0388 (9)0.0060 (8)0.0018 (7)0.0035 (7)
C110.0460 (9)0.0296 (8)0.0339 (8)0.0074 (6)0.0075 (7)0.0016 (6)
C120.0294 (7)0.0356 (7)0.0348 (8)0.0099 (5)0.0057 (6)0.0046 (6)
C130.0593 (12)0.0406 (10)0.0641 (12)−0.0089 (9)0.0157 (10)−0.0125 (9)
C140.204 (4)0.0723 (19)0.129 (3)−0.004 (2)0.093 (3)−0.0396 (19)
C150.120 (2)0.0554 (14)0.094 (2)−0.0337 (16)0.0198 (17)−0.0182 (14)
C160.0412 (9)0.0345 (8)0.0528 (10)0.0041 (7)0.0171 (8)0.0013 (7)
C170.0436 (12)0.0725 (17)0.180 (3)0.0018 (12)0.0436 (16)0.0084 (19)
C180.0562 (12)0.0503 (12)0.0948 (17)0.0194 (10)0.0228 (12)0.0182 (11)
O1W0.0315 (5)0.0401 (6)0.0366 (6)0.0036 (4)0.0088 (4)0.0051 (5)
O10.0484 (7)0.0433 (7)0.0632 (8)−0.0096 (6)0.0151 (6)−0.0163 (6)
O20.0338 (6)0.0384 (6)0.0601 (8)0.0058 (5)0.0147 (5)0.0016 (6)
O30.0368 (6)0.0414 (6)0.0378 (6)0.0003 (5)0.0067 (5)0.0057 (5)
O40.0430 (6)0.0438 (6)0.0348 (6)0.0076 (5)0.0069 (5)−0.0017 (5)
O50.0431 (6)0.0337 (6)0.0427 (6)0.0024 (5)0.0156 (5)0.0040 (5)
O60.0365 (6)0.0442 (6)0.0388 (6)−0.0036 (5)0.0103 (5)0.0041 (5)
N10.0966 (15)0.0409 (9)0.0714 (12)−0.0079 (9)0.0241 (11)−0.0189 (8)
N20.0344 (7)0.0431 (8)0.0626 (10)0.0063 (6)0.0166 (7)0.0011 (7)

Geometric parameters (Å, °)

Cu1—O21.9500 (11)C12—O31.266 (2)
Cu1—O6i1.9505 (11)C13—O11.217 (2)
Cu1—O31.9544 (11)C13—N11.324 (2)
Cu1—O1W1.9678 (11)C13—H13A0.9300
Cu1—O12.2885 (12)C14—N11.456 (3)
C1—O51.2386 (19)C14—H14A0.9600
C1—O61.275 (2)C14—H14B0.9600
C1—C21.508 (2)C14—H14C0.9600
C2—C31.370 (2)C15—N11.452 (3)
C2—C71.428 (2)C15—H15A0.9600
C3—C41.406 (3)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.344 (3)C16—O21.228 (2)
C4—H4A0.9300C16—N21.307 (2)
C5—C61.410 (3)C16—H16A0.9300
C5—H5A0.9300C17—N21.453 (3)
C6—C81.417 (3)C17—H17A0.9600
C6—C71.432 (2)C17—H17B0.9600
C7—C111.430 (2)C17—H17C0.9600
C8—C91.345 (3)C18—N21.447 (3)
C8—H8A0.9300C18—H18A0.9600
C9—C101.406 (3)C18—H18B0.9600
C9—H9A0.9300C18—H18C0.9600
C10—C111.371 (2)O1W—H1WA0.82 (2)
C10—H10A0.9300O1W—H1WB0.80 (1)
C11—C121.507 (2)O6—Cu1i1.9505 (11)
C12—O41.242 (2)
O2—Cu1—O6i94.60 (5)O3—C12—C11116.67 (14)
O2—Cu1—O390.25 (5)O1—C13—N1125.4 (2)
O6i—Cu1—O3175.05 (5)O1—C13—H13A117.3
O2—Cu1—O1W171.31 (5)N1—C13—H13A117.3
O6i—Cu1—O1W88.48 (5)N1—C14—H14A109.5
O3—Cu1—O1W86.58 (5)N1—C14—H14B109.5
O2—Cu1—O196.99 (5)H14A—C14—H14B109.5
O6i—Cu1—O189.67 (5)N1—C14—H14C109.5
O3—Cu1—O190.71 (5)H14A—C14—H14C109.5
O1W—Cu1—O191.15 (5)H14B—C14—H14C109.5
O5—C1—O6125.65 (15)N1—C15—H15A109.5
O5—C1—C2118.24 (15)N1—C15—H15B109.5
O6—C1—C2116.03 (14)H15A—C15—H15B109.5
C3—C2—C7119.91 (16)N1—C15—H15C109.5
C3—C2—C1117.06 (16)H15A—C15—H15C109.5
C7—C2—C1122.75 (14)H15B—C15—H15C109.5
C2—C3—C4121.4 (2)O2—C16—N2122.97 (16)
C2—C3—H3A119.3O2—C16—H16A118.5
C4—C3—H3A119.3N2—C16—H16A118.5
C5—C4—C3120.1 (2)N2—C17—H17A109.5
C5—C4—H4A120.0N2—C17—H17B109.5
C3—C4—H4A120.0H17A—C17—H17B109.5
C4—C5—C6121.06 (18)N2—C17—H17C109.5
C4—C5—H5A119.5H17A—C17—H17C109.5
C6—C5—H5A119.5H17B—C17—H17C109.5
C5—C6—C8120.45 (17)N2—C18—H18A109.5
C5—C6—C7119.75 (19)N2—C18—H18B109.5
C8—C6—C7119.79 (18)H18A—C18—H18B109.5
C2—C7—C11125.34 (14)N2—C18—H18C109.5
C2—C7—C6117.57 (16)H18A—C18—H18C109.5
C11—C7—C6117.08 (16)H18B—C18—H18C109.5
C9—C8—C6121.18 (17)Cu1—O1W—H1WA110.9 (15)
C9—C8—H8A119.4Cu1—O1W—H1WB111.5 (16)
C6—C8—H8A119.4H1WA—O1W—H1WB110.4 (19)
C8—C9—C10119.82 (18)C13—O1—Cu1113.79 (12)
C8—C9—H9A120.1C16—O2—Cu1126.56 (11)
C10—C9—H9A120.1C12—O3—Cu1118.88 (10)
C11—C10—C9121.36 (19)C1—O6—Cu1i122.57 (10)
C11—C10—H10A119.3C13—N1—C15121.0 (2)
C9—C10—H10A119.3C13—N1—C14120.5 (2)
C10—C11—C7120.33 (15)C15—N1—C14118.4 (2)
C10—C11—C12116.57 (15)C16—N2—C18121.61 (16)
C7—C11—C12122.64 (14)C16—N2—C17121.86 (18)
O4—C12—O3126.08 (15)C18—N2—C17116.40 (17)
O4—C12—C11117.15 (14)
O5—C1—C2—C3−129.54 (18)C2—C7—C11—C1214.1 (2)
O6—C1—C2—C347.3 (2)C6—C7—C11—C12−164.70 (15)
O5—C1—C2—C744.3 (2)C10—C11—C12—O4−124.12 (16)
O6—C1—C2—C7−138.81 (16)C7—C11—C12—O448.1 (2)
C7—C2—C3—C4−2.4 (3)C10—C11—C12—O352.4 (2)
C1—C2—C3—C4171.7 (2)C7—C11—C12—O3−135.41 (15)
C2—C3—C4—C5−1.4 (4)N1—C13—O1—Cu1168.26 (19)
C3—C4—C5—C62.4 (4)O2—Cu1—O1—C13135.72 (15)
C4—C5—C6—C8−179.7 (2)O6i—Cu1—O1—C13−129.68 (15)
C4—C5—C6—C70.5 (3)O3—Cu1—O1—C1345.38 (15)
C3—C2—C7—C11−173.81 (17)O1W—Cu1—O1—C13−41.21 (15)
C1—C2—C7—C1112.5 (3)N2—C16—O2—Cu1−174.76 (13)
C3—C2—C7—C65.0 (2)O6i—Cu1—O2—C16−59.16 (15)
C1—C2—C7—C6−168.68 (15)O3—Cu1—O2—C16121.82 (15)
C5—C6—C7—C2−4.1 (3)O1—Cu1—O2—C1631.08 (15)
C8—C6—C7—C2176.05 (17)O4—C12—O3—Cu1−10.9 (2)
C5—C6—C7—C11174.82 (17)C11—C12—O3—Cu1172.91 (10)
C8—C6—C7—C11−5.0 (2)O2—Cu1—O3—C1287.85 (11)
C5—C6—C8—C9179.4 (2)O1W—Cu1—O3—C12−84.05 (11)
C7—C6—C8—C9−0.8 (3)O1—Cu1—O3—C12−175.16 (11)
C6—C8—C9—C104.5 (3)O5—C1—O6—Cu1i−18.5 (2)
C8—C9—C10—C11−2.2 (3)C2—C1—O6—Cu1i164.90 (10)
C9—C10—C11—C7−3.8 (3)O1—C13—N1—C150.0 (4)
C9—C10—C11—C12168.60 (17)O1—C13—N1—C14−177.9 (3)
C2—C7—C11—C10−173.94 (16)O2—C16—N2—C18−1.4 (3)
C6—C7—C11—C107.2 (2)O2—C16—N2—C17−177.2 (2)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.82 (2)1.82 (2)2.642 (2)178 (2)
O1W—H1WB···O4i0.80 (1)1.82 (2)2.623 (2)175 (2)
C3—H3A···O1ii0.932.493.396 (3)164
C13—H13A···O30.932.593.140 (2)119
C17—H17A···O6iii0.962.513.424 (3)159

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x+1/2, y+1/2, z; (iii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2300).

References

  • Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, J. M. (2002). J. Am. Chem. Soc.124, 9990–9991. [PubMed]
  • Bencini, A., Dei, A., Sangregorio, C., Totti, F. & Vaz, M. G. F. (2003). Inorg. Chem.42, 8065–8071. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem.43, 969–977. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, C. Y., Liu, S. X., Liang, D. D., Shao, K. Z., Ren, Y. H. & Su, Z. M. (2009). J. Am. Chem. Soc.131, 1883–1888. [PubMed]
  • Wen, Y. H., Feng, X., Feng, Y. L. & Tang, Z. W. (2008). Inorg. Chem. Commun.11, 659–661.
  • Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography