PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2116.
Published online 2010 July 24. doi:  10.1107/S160053681002876X
PMCID: PMC3007364

Tris[4-(methyl­sulfan­yl)phen­yl]arsine

Abstract

In the title compound, C21H21AsS3, the three benzene rings make dihedral angles of 88.41 (10), 87.75 (9) and 74.74 (10)° with each other. The methyl­sulfanyl groups are roughly coplanar with their attached benzene rings [C—S—C—C torsion angles = −7.6 (2), 11.2 (2) and 4.1 (2)°]. In the crystal, weak C—H(...)π inter­actions link the mol­ecules.

Related literature

For related structures of tris­aryl­arsines with osmium and ruthenium, see: Cullen et al. (1995 [triangle]); Shawkataly et al. (2009a [triangle],b [triangle], 2010a [triangle],b [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2116-scheme1.jpg

Experimental

Crystal data

  • C21H21AsS3
  • M r = 444.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2116-efi1.jpg
  • a = 11.0839 (2) Å
  • b = 11.4556 (2) Å
  • c = 17.3247 (2) Å
  • β = 110.860 (1)°
  • V = 2055.58 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 100 K
  • 0.35 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.545, T max = 0.821
  • 31130 measured reflections
  • 7111 independent reflections
  • 5098 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.097
  • S = 1.01
  • 7111 reflections
  • 229 parameters
  • H-atom parameters constrained
  • Δρmax = 0.86 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002876X/hb5559sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002876X/hb5559Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant No. 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Trisarylarsines are used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995; Shawkataly et al., 2009a, b, 2010a, b).

The three benzene rings of the title compound (Fig. 1) make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 88.41 (10), 87.75 (9) and 74.74 (10)° with each other respectively. The methylsulfanyl groups are nearly coplanar with the attached benzene rings [torsion angles of C19–S1–C4–C3 = -7.6 (2), C20–S2–C10–C9 = 11.2 (2) and C21–S3–C16–C17 = 4.1 (2)°]. In the crystal structure, the molecules are stacked along a axis (Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

Experimental

The reactions were conducted under an atmosphere of high purity nitrogen using standard Schlenk techniques and tetrahydrofuran (THF) dried over sodium metal. Tris(4-(methylsulfanyl)phenyl)arsine was prepared from arsenic trichloride and 4-(methylsulfanyl)phenylmagnesium bromide in tetrahydrofuran. Colourless blocks of (I) were obtained by slow evaporation from a chloroform solution.

Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the a axis, showing the molecules are stacked along a axis.

Crystal data

C21H21AsS3F(000) = 912
Mr = 444.48Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6720 reflections
a = 11.0839 (2) Åθ = 2.7–31.0°
b = 11.4556 (2) ŵ = 1.96 mm1
c = 17.3247 (2) ÅT = 100 K
β = 110.860 (1)°Block, colourless
V = 2055.58 (6) Å30.35 × 0.13 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer7111 independent reflections
Radiation source: fine-focus sealed tube5098 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 32.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −16→16
Tmin = 0.545, Tmax = 0.821k = −11→17
31130 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3
7111 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
As10.851830 (19)0.703422 (18)0.496255 (12)0.01802 (6)
S10.60863 (5)1.03859 (5)0.17158 (3)0.03019 (13)
S20.83788 (6)1.05708 (5)0.78874 (3)0.02996 (13)
S31.44348 (5)0.76333 (6)0.50798 (4)0.03192 (14)
C10.78015 (19)0.80668 (17)0.40006 (12)0.0183 (4)
C20.64685 (19)0.81069 (18)0.35944 (13)0.0224 (4)
H2A0.59440.76530.37900.027*
C30.59018 (19)0.88051 (19)0.29053 (12)0.0234 (4)
H3A0.50080.88240.26510.028*
C40.66768 (19)0.94822 (18)0.25918 (12)0.0204 (4)
C50.80152 (19)0.94533 (17)0.29981 (11)0.0192 (4)
H5A0.85420.99050.28020.023*
C60.85652 (18)0.87601 (17)0.36893 (11)0.0183 (4)
H6A0.94580.87540.39520.022*
C70.84768 (18)0.81425 (17)0.58127 (12)0.0178 (4)
C80.8544 (2)0.77177 (19)0.65816 (13)0.0262 (5)
H8A0.86050.69180.66800.031*
C90.8520 (2)0.8473 (2)0.71996 (13)0.0286 (5)
H9A0.85670.81740.77090.034*
C100.84255 (19)0.96751 (18)0.70672 (12)0.0204 (4)
C110.83575 (18)1.01047 (18)0.63009 (12)0.0197 (4)
H11A0.82931.09040.62010.024*
C120.83859 (18)0.93414 (17)0.56862 (12)0.0186 (4)
H12A0.83430.96390.51780.022*
C131.03380 (18)0.72022 (17)0.50883 (12)0.0178 (4)
C141.0843 (2)0.64556 (18)0.46419 (12)0.0214 (4)
H14A1.03320.58570.43300.026*
C151.2091 (2)0.65933 (19)0.46564 (12)0.0230 (4)
H15A1.24080.60920.43510.028*
C161.28772 (19)0.74795 (19)0.51259 (12)0.0209 (4)
C171.24043 (19)0.81979 (18)0.56012 (12)0.0198 (4)
H17A1.29310.87680.59380.024*
C181.11392 (19)0.80605 (17)0.55710 (11)0.0190 (4)
H18A1.08250.85550.58810.023*
C190.4396 (2)1.0054 (2)0.12929 (14)0.0353 (6)
H19A0.40181.04270.07650.053*
H19B0.39841.03330.16600.053*
H19C0.42810.92250.12280.053*
C200.7909 (3)1.1960 (2)0.73922 (14)0.0367 (6)
H20A0.77051.24840.77610.055*
H20B0.71641.18620.68990.055*
H20C0.86061.22760.72520.055*
C211.5139 (2)0.8774 (3)0.58105 (19)0.0518 (8)
H21A1.59940.89370.58210.078*
H21B1.51800.85310.63500.078*
H21C1.46190.94650.56520.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
As10.01501 (10)0.01771 (11)0.02239 (10)−0.00177 (8)0.00793 (8)−0.00007 (8)
S10.0216 (3)0.0365 (3)0.0284 (3)−0.0021 (2)0.0039 (2)0.0102 (2)
S20.0388 (3)0.0320 (3)0.0207 (2)0.0064 (3)0.0126 (2)−0.0011 (2)
S30.0181 (3)0.0435 (4)0.0390 (3)0.0006 (2)0.0161 (2)−0.0026 (3)
C10.0159 (9)0.0198 (10)0.0199 (9)−0.0017 (8)0.0074 (7)−0.0023 (7)
C20.0152 (9)0.0263 (11)0.0274 (10)−0.0050 (8)0.0096 (8)0.0010 (8)
C30.0136 (9)0.0296 (12)0.0265 (10)−0.0020 (8)0.0065 (8)0.0013 (9)
C40.0186 (10)0.0214 (10)0.0210 (9)0.0002 (8)0.0069 (8)−0.0015 (8)
C50.0176 (9)0.0208 (10)0.0208 (9)−0.0029 (8)0.0088 (7)−0.0033 (8)
C60.0135 (9)0.0216 (10)0.0210 (9)−0.0027 (7)0.0075 (7)−0.0029 (8)
C70.0122 (9)0.0209 (10)0.0220 (9)0.0005 (7)0.0081 (7)0.0017 (7)
C80.0351 (13)0.0199 (11)0.0282 (11)0.0051 (9)0.0168 (9)0.0061 (8)
C90.0379 (13)0.0277 (12)0.0230 (10)0.0047 (10)0.0143 (9)0.0071 (9)
C100.0164 (9)0.0260 (11)0.0199 (9)0.0016 (8)0.0077 (7)0.0003 (8)
C110.0166 (9)0.0191 (10)0.0243 (9)0.0007 (8)0.0085 (8)0.0010 (8)
C120.0175 (9)0.0197 (10)0.0210 (9)−0.0007 (8)0.0097 (7)0.0037 (7)
C130.0145 (9)0.0195 (10)0.0196 (9)−0.0002 (7)0.0061 (7)0.0016 (7)
C140.0210 (10)0.0200 (10)0.0232 (9)0.0013 (8)0.0078 (8)−0.0015 (8)
C150.0215 (10)0.0256 (11)0.0239 (10)0.0044 (9)0.0106 (8)−0.0015 (8)
C160.0156 (9)0.0248 (11)0.0238 (10)0.0037 (8)0.0087 (8)0.0046 (8)
C170.0137 (9)0.0239 (11)0.0215 (9)0.0006 (7)0.0059 (7)0.0019 (8)
C180.0169 (9)0.0215 (10)0.0194 (9)0.0011 (8)0.0076 (7)0.0001 (7)
C190.0242 (12)0.0306 (13)0.0392 (13)0.0000 (10)−0.0033 (10)0.0034 (10)
C200.0505 (16)0.0318 (14)0.0249 (11)0.0106 (11)0.0100 (11)−0.0038 (9)
C210.0193 (12)0.069 (2)0.0692 (19)−0.0159 (13)0.0189 (12)−0.0260 (16)

Geometric parameters (Å, °)

As1—C71.9574 (19)C9—H9A0.9300
As1—C131.960 (2)C10—C111.392 (3)
As1—C11.9660 (19)C11—C121.387 (3)
S1—C41.760 (2)C11—H11A0.9300
S1—C191.793 (2)C12—H12A0.9300
S2—C101.768 (2)C13—C181.388 (3)
S2—C201.795 (2)C13—C141.397 (3)
S3—C161.765 (2)C14—C151.384 (3)
S3—C211.793 (3)C14—H14A0.9300
C1—C21.393 (3)C15—C161.395 (3)
C1—C61.401 (3)C15—H15A0.9300
C2—C31.388 (3)C16—C171.392 (3)
C2—H2A0.9300C17—C181.393 (3)
C3—C41.402 (3)C17—H17A0.9300
C3—H3A0.9300C18—H18A0.9300
C4—C51.398 (3)C19—H19A0.9600
C5—C61.384 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—H6A0.9300C20—H20A0.9600
C7—C121.389 (3)C20—H20B0.9600
C7—C81.395 (3)C20—H20C0.9600
C8—C91.384 (3)C21—H21A0.9600
C8—H8A0.9300C21—H21B0.9600
C9—C101.394 (3)C21—H21C0.9600
C7—As1—C1398.73 (8)C11—C12—C7121.50 (18)
C7—As1—C197.87 (8)C11—C12—H12A119.2
C13—As1—C197.15 (8)C7—C12—H12A119.2
C4—S1—C19103.97 (10)C18—C13—C14118.11 (18)
C10—S2—C20102.53 (10)C18—C13—As1123.30 (15)
C16—S3—C21103.15 (11)C14—C13—As1118.53 (15)
C2—C1—C6117.67 (18)C15—C14—C13121.01 (19)
C2—C1—As1118.95 (14)C15—C14—H14A119.5
C6—C1—As1123.38 (14)C13—C14—H14A119.5
C3—C2—C1121.84 (18)C14—C15—C16120.41 (19)
C3—C2—H2A119.1C14—C15—H15A119.8
C1—C2—H2A119.1C16—C15—H15A119.8
C2—C3—C4120.00 (19)C17—C16—C15119.12 (18)
C2—C3—H3A120.0C17—C16—S3123.24 (16)
C4—C3—H3A120.0C15—C16—S3117.64 (16)
C5—C4—C3118.59 (18)C16—C17—C18119.79 (19)
C5—C4—S1116.77 (15)C16—C17—H17A120.1
C3—C4—S1124.64 (15)C18—C17—H17A120.1
C6—C5—C4120.71 (18)C13—C18—C17121.48 (19)
C6—C5—H5A119.6C13—C18—H18A119.3
C4—C5—H5A119.6C17—C18—H18A119.3
C5—C6—C1121.18 (18)S1—C19—H19A109.5
C5—C6—H6A119.4S1—C19—H19B109.5
C1—C6—H6A119.4H19A—C19—H19B109.5
C12—C7—C8118.15 (18)S1—C19—H19C109.5
C12—C7—As1122.86 (14)H19A—C19—H19C109.5
C8—C7—As1118.99 (15)H19B—C19—H19C109.5
C9—C8—C7120.8 (2)S2—C20—H20A109.5
C9—C8—H8A119.6S2—C20—H20B109.5
C7—C8—H8A119.6H20A—C20—H20B109.5
C8—C9—C10120.74 (19)S2—C20—H20C109.5
C8—C9—H9A119.6H20A—C20—H20C109.5
C10—C9—H9A119.6H20B—C20—H20C109.5
C11—C10—C9118.78 (18)S3—C21—H21A109.5
C11—C10—S2123.63 (16)S3—C21—H21B109.5
C9—C10—S2117.58 (15)H21A—C21—H21B109.5
C12—C11—C10120.06 (19)S3—C21—H21C109.5
C12—C11—H11A120.0H21A—C21—H21C109.5
C10—C11—H11A120.0H21B—C21—H21C109.5
C7—As1—C1—C2−89.18 (16)C8—C9—C10—S2179.13 (18)
C13—As1—C1—C2170.93 (16)C20—S2—C10—C1111.2 (2)
C7—As1—C1—C691.80 (17)C20—S2—C10—C9−167.94 (19)
C13—As1—C1—C6−8.09 (17)C9—C10—C11—C12−0.1 (3)
C6—C1—C2—C3−0.1 (3)S2—C10—C11—C12−179.27 (15)
As1—C1—C2—C3−179.13 (16)C10—C11—C12—C70.2 (3)
C1—C2—C3—C41.0 (3)C8—C7—C12—C11−0.2 (3)
C2—C3—C4—C5−1.3 (3)As1—C7—C12—C11179.94 (14)
C2—C3—C4—S1179.00 (16)C7—As1—C13—C18−9.49 (18)
C19—S1—C4—C5172.71 (16)C1—As1—C13—C1889.65 (17)
C19—S1—C4—C3−7.6 (2)C7—As1—C13—C14173.47 (16)
C3—C4—C5—C60.8 (3)C1—As1—C13—C14−87.39 (16)
S1—C4—C5—C6−179.54 (15)C18—C13—C14—C15−2.3 (3)
C4—C5—C6—C10.2 (3)As1—C13—C14—C15174.91 (15)
C2—C1—C6—C5−0.5 (3)C13—C14—C15—C160.6 (3)
As1—C1—C6—C5178.50 (14)C14—C15—C16—C172.2 (3)
C13—As1—C7—C1279.74 (17)C14—C15—C16—S3−177.57 (16)
C1—As1—C7—C12−18.79 (18)C21—S3—C16—C174.1 (2)
C13—As1—C7—C8−100.12 (17)C21—S3—C16—C15−176.15 (18)
C1—As1—C7—C8161.35 (16)C15—C16—C17—C18−3.1 (3)
C12—C7—C8—C90.0 (3)S3—C16—C17—C18176.61 (15)
As1—C7—C8—C9179.87 (17)C14—C13—C18—C171.3 (3)
C7—C8—C9—C100.1 (3)As1—C13—C18—C17−175.74 (14)
C8—C9—C10—C11−0.1 (3)C16—C17—C18—C131.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg1i0.962.553.441 (3)155

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5559).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cullen, W. R., Rettig, S. J. & Zheng, T. C. (1995). Organometallics, 14, 1466–1470.
  • Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009a). Acta Cryst. E65, m1622–m1623. [PMC free article] [PubMed]
  • Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1624–m1625. [PMC free article] [PubMed]
  • Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m30–m31. [PMC free article] [PubMed]
  • Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m180–m181. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography