PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1960–o1961.
Published online 2010 July 10. doi:  10.1107/S1600536810023068
PMCID: PMC3007361

N-(6-{2-[6-(2,2-Dimethyl­propanamido)-2-pyrid­yl]eth­yl}-2-pyrid­yl)-2,2-dimethyl­propanamide

Abstract

The title compound, C22H30N4O2, lies about a crystallographic inversion center. The whole mol­ecule is disordered over two positions with a refined occupancy ratio of 0.636 (10):0.364 (10). The pyridine rings are approximately planar, with maximum deviations of 0.033 (10) and 0.063 (17) Å for the major and minor components, respectively. The mean planes of the pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups attached to them. In the crystal packing, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the ab plane.

Related literature

For the importance of dicarb­oxy­lic acids and their derivatives, see: Garcia-Tellado et al. (1990 [triangle]); Geib et al. (1993 [triangle]); Karle et al. (1997 [triangle]); Goswami, Dey, Fun et al. (2005 [triangle]); Goswami et al. (2006 [triangle], 2008 [triangle]). For a related structure, see: Goswami, Dey, Chantra­promma et al. (2005 [triangle]). For the preparation, see: Yamada & Momose (1981 [triangle]); Goswami et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1960-scheme1.jpg

Experimental

Crystal data

  • C22H30N4O2
  • M r = 382.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1960-efi1.jpg
  • a = 11.7933 (3) Å
  • b = 10.3648 (2) Å
  • c = 17.8667 (4) Å
  • V = 2183.94 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.36 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.973, T max = 0.992
  • 36712 measured reflections
  • 3221 independent reflections
  • 1678 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.161
  • S = 1.03
  • 3221 reflections
  • 256 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023068/sj5021sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023068/sj5021Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). NKD, DS and SG thank the DST [SR/S1/OC-13/2005] and CSIR [01 (1913)/04/EMR-II], Government of India, for financial support. WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. NKD also thanks the UGC, Government of India, for a Research Fellowship.

supplementary crystallographic information

Comment

The recognition of biologically important substrates like dicarboxylic acids by bis-pyridine amide is one of the most important areas of research in supramolecular chemistry as well as in the design of materials through new crystal engineering (Garcia-Tellado et al., 1990; Geib et al., 1993; Karle et al., 1997; Goswami, Dey, Fun et al., 2005; Goswami et al., 2006, 2008). The title compound can be used as receptor for dicarboxylic acids with the ethylene group acting as a spacer.

The title compound, (Fig. 1), lies about a crystallographic inversion center (symmetry code = -x, -y + 1, -z + 1). The molecule has a whole-molecule disorder over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the molecule, the pyridine rings (C1–C5/N1) are approximately planar with the maximum deviations of 0.033 (10) Å at N1A and 0.063 (17) Å at C1B for the major and minor components, respectively. The mean planes of these pyridine rings form dihedral angles of 17 (2)° in the major component and 18 (2)° in the minor component with the respective formamide groups (N2/C6/O1) attached to them. This crystal structure is closely related to that of N-[6-(hydroxymethyl)pyridin-2-yl]-2,2-dimethylpropanamide (Goswami, Dey, Chantrapromma et al., 2005).

In the crystal packing (Fig. 2 & Fig. 3), intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the ab plane.

Experimental

The title compound is synthesized by a known reaction procedure (Yamada & Momose, 1981; Goswami et al., 1989) as follows. In a round-bottomed flask, N-(6-bromomethyl-pyridine-2-yl)-2,2-dimethyl propionamide (500 mg, 1.84 mmol) and Co(PPh3)3Cl (1.76 g, 2 mmol) was kept under nitrogen atmosphere. Dry, degassed benzene (50 ml) was added dropwise to the flask maintaining at 0–15 °C temperature around the flask. The reaction was continued for half an hour. The deep green colour turns blue, an indication of the completion of the reaction. Then benzene was evaporated and the product extracted with CHCl3. The solvent was then evaporated and purified by silica gel (100–200 mesh) column chromatography using ethyl acetate and petroleum ether (1:4) as eluent. Single crystals were grown by slow evaporation of a chloroform-methanol (8:2) solution of 1,2-bis(2-pivaloylamino-6-pyridyl)ethane (m.p. = 489–491 K, 194 mg, yield = 55%).

Refinement

All the H atoms were positioned geometrically [C–H = 0.93 to 0.97 Å; N–H = 0.86 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C). Rigid bond restraint (SAME) was applied to the pyridine ring. The whole molecule is disordered over two positions with a refined ratio of 0.636 (10): 0.364 (10). In the final difference Fourier map, the highest peak and the deepest hole are 0.66 and 0.37 Å from H11D and H11A, respectively.

Figures

Fig. 1.
The molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atom-numbering scheme. Both major and minor components are shown. Atoms with suffix $ are generated by the symmetry code -x, -y + 1, -z + 1.
Fig. 2.
The two-dimensional networks formed by intermolecular N—H···O and C—H···O hydrogen bonds (dashed lines) parallel to the ab plane. H atoms not involved in intermolecular interactions (dashed ...
Fig. 3.
The crystal packing of the title compound, viewed along the b axis, showing the two-dimensional networks. H atoms not involved in intermolecular interactions have been omitted for clarity. Only the major disorder component is shown.

Crystal data

C22H30N4O2F(000) = 824
Mr = 382.50Dx = 1.163 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2706 reflections
a = 11.7933 (3) Åθ = 2.9–20.5°
b = 10.3648 (2) ŵ = 0.08 mm1
c = 17.8667 (4) ÅT = 296 K
V = 2183.94 (9) Å3Block, colourless
Z = 40.36 × 0.15 × 0.10 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3221 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
graphiteRint = 0.076
[var phi] and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −13→16
Tmin = 0.973, Tmax = 0.992k = −14→14
36712 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.161w = 1/[σ2(Fo2) + (0.0587P)2 + 0.3829P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3221 reflectionsΔρmax = 0.17 e Å3
256 parametersΔρmin = −0.16 e Å3
12 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1A0.2767 (12)0.0598 (8)0.3040 (6)0.079 (3)0.636 (10)
N2A0.2446 (11)0.2679 (14)0.3392 (8)0.0476 (18)0.636 (10)
H2AB0.24850.34730.32550.057*0.636 (10)
N1A0.1312 (9)0.3395 (8)0.4318 (5)0.067 (3)0.636 (10)
C1A0.0598 (10)0.3242 (10)0.4903 (5)0.073 (3)0.636 (10)
C2A0.0520 (10)0.2138 (8)0.5303 (5)0.073 (4)0.636 (10)
H2AA0.00770.21090.57340.087*0.636 (10)
C3A0.1097 (10)0.1060 (9)0.5071 (4)0.0587 (19)0.636 (10)
H3AA0.10190.02770.53200.070*0.636 (10)
C4A0.1794 (11)0.1177 (8)0.4459 (6)0.055 (3)0.636 (10)
H4AA0.22260.04800.42970.066*0.636 (10)
C5A0.1845 (7)0.2338 (8)0.4088 (4)0.041 (2)0.636 (10)
C6A0.2935 (10)0.1758 (9)0.2969 (5)0.049 (3)0.636 (10)
C7A0.3538 (9)0.2266 (9)0.2207 (8)0.052 (3)0.636 (10)
C8A0.2636 (6)0.2620 (9)0.1715 (3)0.127 (4)0.636 (10)
H8AA0.21960.18690.15940.191*0.636 (10)
H8AB0.29450.29820.12640.191*0.636 (10)
H8AC0.21600.32470.19550.191*0.636 (10)
C9A0.4357 (6)0.1286 (6)0.1954 (5)0.113 (3)0.636 (10)
H9AA0.39600.05110.18200.169*0.636 (10)
H9AB0.48810.11010.23510.169*0.636 (10)
H9AC0.47640.16050.15280.169*0.636 (10)
C10A0.4251 (6)0.3487 (4)0.2434 (4)0.0838 (18)0.636 (10)
H10A0.46340.38200.20010.126*0.636 (10)
H10B0.48000.32510.28060.126*0.636 (10)
H10C0.37540.41360.26320.126*0.636 (10)
C11A−0.0048 (12)0.4445 (9)0.5168 (6)0.146 (4)0.636 (10)
H11A−0.08470.42250.51640.175*0.636 (10)
H11B0.01590.45830.56870.175*0.636 (10)
O1B0.304 (2)0.0619 (16)0.3078 (10)0.089 (5)0.364 (10)
N2B0.257 (2)0.254 (2)0.3499 (15)0.050 (4)0.364 (10)
H2BB0.28790.32880.34760.060*0.364 (10)
N1B0.1365 (16)0.3484 (15)0.4367 (9)0.066 (5)0.364 (10)
C1B0.0801 (16)0.3399 (14)0.5017 (7)0.049 (3)0.364 (10)
C2B0.0611 (19)0.2206 (16)0.5319 (7)0.086 (8)0.364 (10)
H2BA0.00900.20850.57040.103*0.364 (10)
C3B0.122 (2)0.1198 (19)0.5029 (11)0.094 (7)0.364 (10)
H3BA0.11990.04150.52830.113*0.364 (10)
C4B0.1855 (19)0.1273 (16)0.4388 (12)0.066 (6)0.364 (10)
H4BA0.22320.05670.41840.079*0.364 (10)
C5B0.1887 (18)0.2479 (16)0.4074 (11)0.064 (5)0.364 (10)
C6B0.2962 (18)0.1758 (18)0.2901 (10)0.062 (6)0.364 (10)
C7B0.3565 (14)0.2338 (18)0.2344 (14)0.053 (4)0.364 (10)
C8B0.4674 (12)0.272 (3)0.2505 (7)0.187 (10)0.364 (10)
H8BA0.46640.33720.28840.281*0.364 (10)
H8BB0.50220.30510.20600.281*0.364 (10)
H8BC0.50970.19860.26810.281*0.364 (10)
C9B0.2959 (17)0.340 (2)0.1898 (11)0.210 (12)0.364 (10)
H9BA0.28710.41520.22070.314*0.364 (10)
H9BB0.22270.30980.17430.314*0.364 (10)
H9BC0.34020.36170.14650.314*0.364 (10)
C10B0.3652 (19)0.1244 (13)0.1673 (7)0.145 (7)0.364 (10)
H10D0.40150.16160.12430.218*0.364 (10)
H10E0.29040.09610.15400.218*0.364 (10)
H10F0.40880.05220.18470.218*0.364 (10)
C11B0.0373 (8)0.4652 (12)0.5286 (4)0.060 (3)0.364 (10)
H11C0.10120.52000.54120.072*0.364 (10)
H11D−0.00620.45140.57400.072*0.364 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.128 (6)0.036 (3)0.072 (3)−0.004 (3)0.017 (3)−0.009 (2)
N2A0.055 (3)0.041 (4)0.047 (3)0.007 (2)0.015 (3)0.003 (3)
N1A0.081 (5)0.049 (4)0.070 (5)−0.001 (3)0.044 (4)−0.002 (3)
C1A0.076 (5)0.076 (4)0.065 (5)0.005 (3)0.020 (4)−0.016 (3)
C2A0.077 (5)0.071 (6)0.070 (6)−0.011 (4)0.025 (4)−0.001 (4)
C3A0.073 (4)0.060 (3)0.042 (3)−0.007 (3)0.001 (3)0.008 (2)
C4A0.074 (5)0.043 (4)0.048 (4)−0.007 (3)−0.006 (3)0.016 (3)
C5A0.042 (3)0.040 (4)0.041 (3)0.008 (3)0.004 (3)−0.006 (3)
C6A0.060 (5)0.043 (5)0.044 (3)−0.003 (3)0.001 (3)0.014 (3)
C7A0.069 (4)0.046 (3)0.043 (5)−0.007 (2)0.013 (3)−0.004 (3)
C8A0.085 (3)0.235 (10)0.062 (2)−0.026 (5)−0.013 (3)0.065 (4)
C9A0.106 (4)0.073 (3)0.159 (6)0.004 (3)0.073 (4)−0.025 (3)
C10A0.094 (4)0.071 (3)0.086 (3)−0.021 (2)0.025 (3)0.000 (2)
C11A0.181 (9)0.091 (4)0.165 (8)0.045 (7)0.105 (6)0.014 (6)
O1B0.129 (11)0.062 (7)0.074 (6)0.041 (6)0.040 (6)0.027 (5)
N2B0.069 (7)0.025 (3)0.056 (7)0.001 (4)−0.002 (4)0.010 (4)
N1B0.085 (9)0.054 (7)0.060 (7)0.018 (5)−0.008 (6)−0.015 (5)
C1B0.061 (5)0.059 (5)0.027 (3)−0.004 (4)−0.006 (3)−0.005 (3)
C2B0.098 (13)0.129 (18)0.030 (6)0.019 (10)0.008 (6)0.015 (7)
C3B0.118 (14)0.079 (9)0.086 (10)−0.020 (8)0.007 (8)0.038 (7)
C4B0.062 (8)0.084 (13)0.051 (7)0.021 (8)0.014 (5)−0.013 (8)
C5B0.071 (9)0.055 (7)0.068 (9)−0.035 (6)−0.004 (7)0.013 (6)
C6B0.059 (9)0.059 (10)0.068 (8)0.028 (7)0.002 (6)−0.039 (6)
C7B0.044 (5)0.083 (8)0.032 (6)0.021 (5)0.003 (3)−0.019 (4)
C8B0.096 (10)0.37 (3)0.095 (7)−0.108 (14)0.009 (7)−0.006 (14)
C9B0.203 (19)0.23 (2)0.196 (17)0.135 (15)0.127 (15)0.154 (15)
C10B0.218 (17)0.124 (8)0.094 (7)−0.057 (11)0.095 (10)−0.047 (6)
C11B0.063 (4)0.098 (9)0.019 (2)0.020 (4)0.000 (3)−0.010 (3)

Geometric parameters (Å, °)

O1A—C6A1.225 (11)O1B—C6B1.23 (2)
N2A—C6A1.348 (17)N2B—C5B1.31 (3)
N2A—C5A1.473 (14)N2B—C6B1.42 (3)
N2A—H2AB0.8600N2B—H2BB0.8600
N1A—C5A1.328 (7)N1B—C5B1.318 (13)
N1A—C1A1.352 (7)N1B—C1B1.341 (12)
C1A—C2A1.353 (8)C1B—C2B1.368 (13)
C1A—C11A1.536 (13)C1B—C11B1.47 (2)
C2A—C3A1.372 (7)C2B—C3B1.368 (13)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.374 (8)C3B—C4B1.372 (13)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.375 (7)C4B—C5B1.372 (13)
C4A—H4AA0.9300C4B—H4BA0.9300
C6A—C7A1.624 (14)C6B—C7B1.36 (3)
C7A—C8A1.429 (14)C7B—C8B1.39 (2)
C7A—C9A1.473 (12)C7B—C9B1.54 (2)
C7A—C10A1.572 (12)C7B—C10B1.65 (2)
C8A—H8AA0.9600C8B—H8BA0.9600
C8A—H8AB0.9600C8B—H8BB0.9600
C8A—H8AC0.9600C8B—H8BC0.9600
C9A—H9AA0.9600C9B—H9BA0.9600
C9A—H9AB0.9600C9B—H9BB0.9600
C9A—H9AC0.9600C9B—H9BC0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—C11Ai1.302 (17)C11B—C11Bi1.530 (19)
C11A—H11A0.9700C11B—H11C0.9700
C11A—H11B0.9700C11B—H11D0.9700
C6A—N2A—C5A120.6 (11)C5B—N2B—C6B140 (2)
C6A—N2A—H2AB119.7C5B—N2B—H2BB109.9
C5A—N2A—H2AB119.7C6B—N2B—H2BB109.9
C5A—N1A—C1A116.0 (7)C5B—N1B—C1B121.6 (13)
N1A—C1A—C2A123.4 (8)N1B—C1B—C2B118.8 (13)
N1A—C1A—C11A116.9 (8)N1B—C1B—C11B113.3 (11)
C2A—C1A—C11A119.4 (8)C2B—C1B—C11B127.7 (12)
C1A—C2A—C3A119.7 (8)C1B—C2B—C3B117.1 (14)
C1A—C2A—H2AA120.2C1B—C2B—H2BA121.5
C3A—C2A—H2AA120.2C3B—C2B—H2BA121.5
C2A—C3A—C4A117.8 (8)C2B—C3B—C4B124.0 (14)
C2A—C3A—H3AA121.1C2B—C3B—H3BA118.0
C4A—C3A—H3AA121.1C4B—C3B—H3BA118.0
C3A—C4A—C5A119.1 (7)C5B—C4B—C3B114.1 (13)
C3A—C4A—H4AA120.4C5B—C4B—H4BA123.0
C5A—C4A—H4AA120.4C3B—C4B—H4BA123.0
N1A—C5A—C4A123.5 (6)N2B—C5B—N1B124.3 (18)
N1A—C5A—N2A106.9 (8)N2B—C5B—C4B112.4 (17)
C4A—C5A—N2A129.6 (8)N1B—C5B—C4B123.0 (14)
O1A—C6A—N2A124.5 (10)O1B—C6B—C7B125.0 (17)
O1A—C6A—C7A118.5 (10)O1B—C6B—N2B112 (2)
N2A—C6A—C7A115.3 (9)C7B—C6B—N2B118 (2)
C8A—C7A—C9A118.5 (10)C6B—C7B—C8B118 (2)
C8A—C7A—C10A110.5 (7)C6B—C7B—C9B116.9 (15)
C9A—C7A—C10A106.5 (7)C8B—C7B—C9B109.9 (16)
C8A—C7A—C6A105.8 (8)C6B—C7B—C10B105.0 (15)
C9A—C7A—C6A108.6 (7)C8B—C7B—C10B106.5 (14)
C10A—C7A—C6A106.3 (9)C9B—C7B—C10B98.3 (16)
C7A—C8A—H8AA109.5C7B—C8B—H8BA109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AC109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
C7A—C9A—H9AA109.5C7B—C9B—H9BA109.5
C7A—C9A—H9AB109.5C7B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AC109.5C7B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C7A—C10A—H10A109.5C7B—C10B—H10D109.5
C7A—C10A—H10B109.5C7B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C7A—C10A—H10C109.5C7B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C11Ai—C11A—C1A122.2 (9)C1B—C11B—C11Bi113.2 (10)
C11Ai—C11A—H11A106.8C1B—C11B—H11C108.9
C1A—C11A—H11A106.8C11Bi—C11B—H11C108.9
C11Ai—C11A—H11B106.8C1B—C11B—H11D108.9
C1A—C11A—H11B106.8C11Bi—C11B—H11D108.9
H11A—C11A—H11B106.6H11C—C11B—H11D107.8

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10A—H10C···O1Aii0.962.463.409 (12)171
N2A—H2AB···O1Aii0.862.263.100 (16)168

Symmetry codes: (ii) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5021).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc.112, 7393–7394.
  • Geib, S. J., Vicent, C., Fan, E. & Hamilton, A. D. (1993). Angew. Chem. Int. Ed. Engl.32, 119–121.
  • Goswami, S., Dey, S., Chantrapromma, S. & Fun, H.-K. (2005). Acta Cryst. E61, o105–o107.
  • Goswami, S., Dey, S., Fun, H.-K., Anjum, S. & Rahman, A.-U. (2005). Tetrahedron Lett.46, 7187–7191.
  • Goswami, S., Hamilton, A. D. & Van Engen, D. (1989). J. Am. Chem. Soc.111, 3425–3426.
  • Goswami, S., Jana, S., Dey, S., Razak, I. A. & Fun, H.-K. (2006). Supramol. Chem.18, 571–574.
  • Goswami, S., Jana, S. & Fun, H.-K. (2008). CrystEngComm, 10, 507–517.
  • Karle, I. L., Ranganathan, D. & Haridas, V. (1997). J. Am. Chem. Soc.119, 2777–278.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yamada, Y. & Momose, D. (1981). Chem. Lett. pp. 1277–1278.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography