PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1931.
Published online 2010 July 7. doi:  10.1107/S1600536810025675
PMCID: PMC3007353

(E)-1,3-Bis(2,3,4,5,6-penta­fluoro­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C15H2F10O, the two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The olefinic double bond adopts an E configuration and the single bond between the olefinic and carbonyl double bonds has an s-trans conformation. The carbonyl group is not in a coplanar alignment with respect to the neighbouring arene ring (0.963 Å from aryl plane) while being coplanar with regard to the olefinic double bond (0.0805 Å from olefinic bond). The crystal packing does not feature significant hydrogen-bond-type or stacking inter­actions.

Related literature

For a detailed discussion of fluorinated chalcones, see: Cesarin-Sobrinho & Netto-Ferreira (2002 [triangle]); Cesarin-Sobrinho et al. (2001 [triangle]). For the crystal structure of the parent chalcone, see: Rabinovich (1970 [triangle]); Ohkura et al. (1973 [triangle]); Arai et al. (1994 [triangle]); Wu et al. (2006 [triangle]). For a related structure, see: Schwarzer & Weber (2009 [triangle]). For inter­molecular F(...)F contacts, see: Awwadi et al. (2006 [triangle]). For weak hydrogen bonds, see: Desiraju & Steiner (1999 [triangle]). For the polymorphism of the non-fluorinated derivative, see: Weygand (1929 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1931-scheme1.jpg

Experimental

Crystal data

  • C15H2F10O
  • M r = 388.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1931-efi1.jpg
  • a = 11.444 (1) Å
  • b = 9.563 (1) Å
  • c = 12.138 (2) Å
  • β = 101.414 (3)°
  • V = 1302.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 93 K
  • 0.26 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • 26448 measured reflections
  • 2993 independent reflections
  • 2404 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.080
  • S = 1.08
  • 2993 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810025675/im2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025675/im2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound (Fig. 1) exhibits a non-planar structure, that can be described by dihedral and torsional angles realting the arene rings and the carbonyl group to each other. The two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The carbonyl group is tilted with reference to the adjacent perfluoro arene unit showing a torsional angle O1—C9—C10—C15 of 60.3 (2)°. According to Cesarin-Sobrinho et al. (2001) this can be expressed as the s-trans conformation. The olefinic double bond is fixed in the (E)-configuration.

Remarkably, in the crystal structure, the oxygen atom of the polar carbonyl group does not show an intermolecular interaction such as a C—H···O contact (Desiraju & Steiner, 1999). Moreover, neither C—H···F– nor C—H···π contacts and stacking interactions between the perfluorinated arene units occur in the crystal packing. Only closer distances between fluorine atoms and the centre of adjacent perfluorinated aryl rings in the range of 3.0–3.2 Å (150–168°) as well as F···F contacts with distances smaller than the sum of the van-der-Waals-radii can be detected. Nevertheless, there is no indication regarding the angles of the F···F contacts pointing to a head-on or side-on mode of interaction typical for halogen-halogen contacts (Awwadi et al., 2006).

Drawing a comparison with the parent non-fluorinated compound (E)-1,3-diphenyl-2-propen-1-one, which exists in at least four different crystalline polymorphs (Weygand, 1929), a main difference between the decafluorinated chalcone and the nonfluorinated chalcones is the location of the olefinic double bond with reference to the carbonyl double bond. While in the present title compound these bonds are s-trans, in the structures of the unfluorinated chalcones they are s-cis. The molecular geometries also differ concerning planarity. That is to say, the perfluoro arene units, one with another, show a torsional angle of 66.08 (5)° but for the unfluorinated chalcones the angles are around 12°. Also the torsions involving the adjacent arene and carbonyl groups (2.5, 15.0 and 17.6°) are significantly smaller compared with the fluorinated title compound (60.3 (2)°). Moreover, regarding the packing arrangement, the parent chalcones show a number of intermolecular C—H···O and C—H···π type contacts.

Experimental

The title compound was obtained from a solution of 2,3,4,5,6-pentafluoroacetophenone and 2,3,4,5,6-pentafluorobenzaldehyde in sulfuric acid. Recrystallization from ethanol yielded 56% single crystals suitable for X-ray crystallography.

Figures

Fig. 1.
Perspective view of (I), showing 50% probability displacement ellipsoids for the non-H atoms.

Crystal data

C15H2F10OF(000) = 760
Mr = 388.17Dx = 1.980 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6932 reflections
a = 11.444 (1) Åθ = 2.7–31.2°
b = 9.563 (1) ŵ = 0.22 mm1
c = 12.138 (2) ÅT = 93 K
β = 101.414 (3)°Splitter, yellow
V = 1302.1 (3) Å30.26 × 0.16 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
graphiteθmax = 27.5°, θmin = 2.2°
phi and ω scansh = −14→14
26448 measured reflectionsk = −12→11
2993 independent reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8152P] where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.08561 (10)0.88461 (13)0.74475 (9)0.0217 (3)
F10.11079 (8)0.82449 (11)1.13198 (7)0.0219 (2)
F20.25675 (9)0.81099 (10)1.33222 (7)0.0229 (2)
F30.47708 (9)0.92977 (11)1.36477 (8)0.0252 (2)
F40.54620 (8)1.07257 (10)1.19539 (8)0.0235 (2)
F50.39739 (8)1.09616 (10)0.99452 (8)0.0214 (2)
F60.21736 (9)0.74714 (11)0.73250 (8)0.0252 (2)
F70.34571 (9)0.82160 (11)0.57810 (8)0.0264 (2)
F80.29589 (9)1.06719 (11)0.46224 (8)0.0237 (2)
F90.10919 (9)1.22599 (10)0.49466 (8)0.0228 (2)
F10−0.02162 (8)1.14862 (10)0.64486 (8)0.0217 (2)
C10.21650 (14)0.89021 (17)1.14490 (13)0.0170 (3)
C20.29072 (15)0.88141 (17)1.24884 (13)0.0184 (3)
C30.40208 (15)0.94296 (17)1.26555 (13)0.0187 (3)
C40.43704 (14)1.01588 (17)1.17940 (13)0.0182 (3)
C50.36026 (14)1.02514 (17)1.07695 (12)0.0167 (3)
C60.24865 (14)0.96066 (17)1.05466 (12)0.0163 (3)
C70.18133 (14)0.95916 (17)0.93890 (13)0.0170 (3)
H70.21771.00560.88520.020*
C80.07515 (15)0.90086 (17)0.89895 (13)0.0189 (3)
H80.03460.85410.94930.023*
C90.01954 (14)0.90743 (17)0.77860 (13)0.0168 (3)
C100.09586 (14)0.94777 (17)0.69495 (12)0.0160 (3)
C110.18995 (15)0.86724 (17)0.67481 (13)0.0180 (3)
C120.25647 (14)0.90341 (18)0.59587 (13)0.0193 (3)
C130.23042 (14)1.02638 (18)0.53571 (12)0.0181 (3)
C140.13576 (14)1.10771 (16)0.55273 (13)0.0165 (3)
C150.06936 (14)1.06744 (17)0.63041 (13)0.0167 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0186 (6)0.0239 (6)0.0216 (6)−0.0039 (5)0.0013 (5)−0.0006 (5)
F10.0197 (5)0.0284 (6)0.0177 (5)−0.0028 (4)0.0041 (4)0.0009 (4)
F20.0242 (5)0.0301 (6)0.0156 (4)0.0031 (4)0.0067 (4)0.0050 (4)
F30.0228 (5)0.0339 (6)0.0163 (5)0.0038 (4)−0.0022 (4)0.0021 (4)
F40.0190 (5)0.0273 (6)0.0224 (5)−0.0040 (4)−0.0009 (4)−0.0008 (4)
F50.0223 (5)0.0232 (5)0.0183 (5)−0.0049 (4)0.0031 (4)0.0029 (4)
F60.0330 (6)0.0224 (5)0.0201 (5)0.0108 (4)0.0050 (4)0.0059 (4)
F70.0242 (5)0.0338 (6)0.0216 (5)0.0121 (5)0.0058 (4)−0.0012 (4)
F80.0231 (5)0.0312 (6)0.0186 (5)−0.0020 (4)0.0086 (4)−0.0002 (4)
F90.0290 (5)0.0168 (5)0.0237 (5)0.0005 (4)0.0077 (4)0.0054 (4)
F100.0203 (5)0.0197 (5)0.0265 (5)0.0047 (4)0.0081 (4)0.0026 (4)
C10.0154 (8)0.0173 (8)0.0190 (8)0.0018 (6)0.0049 (6)−0.0028 (6)
C20.0226 (8)0.0192 (8)0.0149 (7)0.0050 (7)0.0072 (6)0.0017 (6)
C30.0208 (8)0.0206 (8)0.0133 (7)0.0069 (7)−0.0001 (6)−0.0016 (6)
C40.0156 (8)0.0178 (8)0.0204 (8)0.0008 (6)0.0020 (6)−0.0035 (6)
C50.0218 (8)0.0146 (8)0.0139 (7)0.0018 (6)0.0045 (6)−0.0002 (6)
C60.0183 (8)0.0156 (8)0.0149 (7)0.0038 (6)0.0029 (6)−0.0027 (6)
C70.0208 (8)0.0152 (8)0.0153 (7)0.0031 (6)0.0042 (6)−0.0004 (6)
C80.0225 (8)0.0189 (8)0.0154 (7)0.0002 (7)0.0043 (6)0.0002 (6)
C90.0197 (8)0.0141 (8)0.0165 (7)0.0000 (6)0.0032 (6)−0.0006 (6)
C100.0160 (8)0.0183 (8)0.0123 (7)−0.0021 (6)−0.0008 (6)−0.0025 (6)
C110.0215 (8)0.0170 (8)0.0136 (7)0.0020 (6)−0.0013 (6)0.0009 (6)
C120.0182 (8)0.0231 (9)0.0156 (7)0.0043 (7)0.0009 (6)−0.0059 (6)
C130.0185 (8)0.0235 (9)0.0122 (7)−0.0035 (7)0.0028 (6)−0.0031 (6)
C140.0187 (8)0.0148 (8)0.0146 (7)−0.0028 (6)−0.0003 (6)−0.0005 (6)
C150.0161 (8)0.0164 (8)0.0162 (7)−0.0010 (6)−0.0002 (6)−0.0034 (6)

Geometric parameters (Å, °)

O1—C91.212 (2)C4—C51.376 (2)
F1—C11.3446 (19)C5—C61.396 (2)
F2—C21.3358 (18)C6—C71.463 (2)
F3—C31.3393 (17)C7—C81.338 (2)
F4—C41.3401 (19)C7—H70.9500
F5—C51.3458 (18)C8—C91.475 (2)
F6—C111.3495 (19)C8—H80.9500
F7—C121.3375 (19)C9—C101.514 (2)
F8—C131.3317 (18)C10—C111.384 (2)
F9—C141.3356 (18)C10—C151.386 (2)
F10—C151.3378 (19)C11—C121.381 (2)
C1—C21.377 (2)C12—C131.385 (2)
C1—C61.396 (2)C13—C141.382 (2)
C2—C31.382 (2)C14—C151.378 (2)
C3—C41.380 (2)
F1—C1—C2117.12 (14)C9—C8—H8119.2
F1—C1—C6120.32 (14)O1—C9—C8122.21 (15)
C2—C1—C6122.54 (15)O1—C9—C10118.96 (14)
F2—C2—C1120.38 (15)C8—C9—C10118.81 (14)
F2—C2—C3120.11 (14)C11—C10—C15116.77 (15)
C1—C2—C3119.48 (15)C11—C10—C9123.27 (14)
F3—C3—C4119.90 (15)C15—C10—C9119.90 (14)
F3—C3—C2120.01 (14)F6—C11—C12118.02 (14)
C4—C3—C2120.08 (14)F6—C11—C10119.40 (14)
F4—C4—C5121.00 (15)C12—C11—C10122.56 (15)
F4—C4—C3119.75 (14)F7—C12—C11120.59 (15)
C5—C4—C3119.21 (15)F7—C12—C13120.21 (15)
F5—C5—C4117.72 (14)C11—C12—C13119.20 (15)
F5—C5—C6119.36 (13)F8—C13—C14119.78 (15)
C4—C5—C6122.88 (15)F8—C13—C12120.72 (15)
C5—C6—C1115.74 (14)C14—C13—C12119.50 (15)
C5—C6—C7118.58 (14)F9—C14—C15119.94 (14)
C1—C6—C7125.35 (15)F9—C14—C13120.08 (14)
C8—C7—C6128.34 (15)C15—C14—C13119.98 (15)
C8—C7—H7115.8F10—C15—C14118.45 (14)
C6—C7—H7115.8F10—C15—C10119.60 (14)
C7—C8—C9121.62 (15)C14—C15—C10121.93 (15)
C7—C8—H8119.2
F1—C1—C2—F2−0.5 (2)O1—C9—C10—C11−116.74 (18)
C6—C1—C2—F2−178.97 (14)C8—C9—C10—C1164.8 (2)
F1—C1—C2—C3177.77 (14)O1—C9—C10—C1560.3 (2)
C6—C1—C2—C3−0.7 (2)C8—C9—C10—C15−118.11 (17)
F2—C2—C3—F31.3 (2)C15—C10—C11—F6−177.84 (14)
C1—C2—C3—F3−177.02 (14)C9—C10—C11—F6−0.7 (2)
F2—C2—C3—C4−179.91 (15)C15—C10—C11—C120.9 (2)
C1—C2—C3—C41.8 (2)C9—C10—C11—C12178.04 (15)
F3—C3—C4—F40.3 (2)F6—C11—C12—F7−0.4 (2)
C2—C3—C4—F4−178.47 (14)C10—C11—C12—F7−179.14 (14)
F3—C3—C4—C5178.17 (14)F6—C11—C12—C13−179.81 (14)
C2—C3—C4—C5−0.6 (2)C10—C11—C12—C131.4 (2)
F4—C4—C5—F5−1.7 (2)F7—C12—C13—F8−2.2 (2)
C3—C4—C5—F5−179.55 (14)C11—C12—C13—F8177.26 (14)
F4—C4—C5—C6176.10 (14)F7—C12—C13—C14178.14 (14)
C3—C4—C5—C6−1.7 (2)C11—C12—C13—C14−2.4 (2)
F5—C5—C6—C1−179.47 (14)F8—C13—C14—F90.8 (2)
C4—C5—C6—C12.7 (2)C12—C13—C14—F9−179.51 (14)
F5—C5—C6—C76.8 (2)F8—C13—C14—C15−178.60 (13)
C4—C5—C6—C7−171.00 (15)C12—C13—C14—C151.1 (2)
F1—C1—C6—C5−179.90 (14)F9—C14—C15—F100.5 (2)
C2—C1—C6—C5−1.5 (2)C13—C14—C15—F10179.96 (13)
F1—C1—C6—C7−6.7 (2)F9—C14—C15—C10−178.06 (13)
C2—C1—C6—C7171.73 (15)C13—C14—C15—C101.4 (2)
C5—C6—C7—C8178.28 (16)C11—C10—C15—F10179.11 (13)
C1—C6—C7—C85.2 (3)C9—C10—C15—F101.9 (2)
C6—C7—C8—C9−179.30 (15)C11—C10—C15—C14−2.3 (2)
C7—C8—C9—O1−162.80 (16)C9—C10—C15—C14−179.54 (14)
C7—C8—C9—C1015.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2215).

References

  • Arai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys.33, 5755–5758.
  • Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J.12, 8952–8960. [PubMed]
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cesarin-Sobrinho, D. & Netto-Ferreira, J. C. (2002). Quim. Nova, 25, 62–68.
  • Cesarin-Sobrinho, D., Netto-Ferreira, J. C. & Braz-Filho, R. (2001). Quim. Nova, 24, 604–611.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond Oxford University Press.
  • Ohkura, K., Kashino, S. & Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 627–628.
  • Rabinovich, D. (1970). J. Chem. Soc. B, pp. 11–16.
  • Schwarzer, A. & Weber, E. (2009). Acta Cryst. E65, o2801. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weygand, C. (1929). Liebigs Ann. Chem.472, 143–179.
  • Wu, M.-H., Yang, X.-H., Zou, W.-D., Liu, W.-J. & Li, C. (2006). Z. Kristallogr. New Cryst. Struct.221, 323.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography