PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1982.
Published online 2010 July 10. doi:  10.1107/S1600536810026413
PMCID: PMC3007352

Ethyl 4-hy­droxy-2,6-diphenyl-1-(2-thio­morpholino­acet­yl)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

Abstract

In the title compound, C26H30N2O4S, the thio­morpholine ring adopts a chair conformation whereas the tetra­hydro­pyridine ring is in a half-chair conformation. The dihedral angle between the two phenyl rings is 33.3 (2)°. A strong intra­molecular O—H(...)O hydrogen bond generates an S(6) motif. In the crystal, mol­ecules are linked by inter­molecular C—H(...)O hydrogen bonds, generating a ribbon-like structure propagating along the a axis.

Related literature

For general background to the biological activity of tetra­hydro­pyridine derivatives, see: Aridoss et al. (2008 [triangle], 2010 [triangle]); Chow et al. (1968 [triangle]). For related structures, see: Subha Nandhini et al. (2003 [triangle]); Aridoss et al. (2009 [triangle]); Parkin et al. (2004 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1982-scheme1.jpg

Experimental

Crystal data

  • C26H30N2O4S
  • M r = 466.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1982-efi1.jpg
  • a = 10.9561 (6) Å
  • b = 9.5665 (6) Å
  • c = 22.9011 (12) Å
  • β = 93.575 (3)°
  • V = 2395.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 292 K
  • 0.26 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.957, T max = 0.967
  • 21473 measured reflections
  • 5677 independent reflections
  • 3669 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.217
  • S = 1.04
  • 5677 reflections
  • 299 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026413/ci5116sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026413/ci5116Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

GA and YTJ are grateful for the support provided by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

supplementary crystallographic information

Comment

The asymmetric unit of N-chloroacetyl-3-carboxyethyl-2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine obtained from the chloroacetylation of 3-carboxyethyl-2,6-diphenylpiperidin-4-one contains two crystallographically independent molecules wherein the two phenyl groups are oriented axially to avoid the steric repulsion (A1,3 strain; Chow et al., 1968) with coplanar –NCOCH2 group besides adopting the non-chair conformation for the tetrahydropyridine ring (Aridoss et al., 2008). However, it was confirmed by X-ray study that the two phenyl groups take up anti orientation with each other upon replacement of chlorine by morpholine system (Aridoss et al., 2010). In order to study the orientation of phenyl groups and conformation of tetrahydropyridine ring system upon substitution of thiomorpholine instead of morpholine, the current study has been undertaken.

The sum of bond angles around atoms N1 (358.0 (2)°) and N2 (329.5 (2)°) of the tetrahydropyridine and the thiomorpholine rings in the molecule is in accordance with sp2 and sp3 hybridizations. The thiomorpholine ring adopts a chair conformation. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiomorpholine/tetrahydropyridine ring are q2 = 0.021 (3)/0.355 (2) Å, q3 = 0.631 (3)/-0.295 (2) Å; QT = 0.632 (3)/0.461 (2) Å and θ = 1.8 (3)/129.8 (3)°. The dihedral angle between the two phenyl ring is 33.4 (2)°. The thiomorpholine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C18—O3—C19—C20 = 110.8 (6)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O4 as an aceptor. In the crystal structure, the molecules at (x,y,z) and (1 - x,1 - y,-z), (2 - x,1 - y,-z) are linked by C—H···O hydrogen bonds into a ribbon-like structure along the a axis; the ribbons contain R22(12) and R22(16) ring motifs.

Experimental

To a mixture of thiomorpholine (1 equiv.) and dry K2CO3 (2 equiv.) in benzene, N-chloroacetyl-3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) in benzene was added slowly and refluxed until completion (Aridoss et al., 2010). Through a typical work up procedure and purification, pure title compound was achieved, which on further crystallization in ethanol gave diffraction quality crystals.

Refinement

H atoms were positioned geometrically (O–H = 0.82 Å and C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of the molecules viewed down the b axis. For clarity, H atoms which are not involved in hydrogen bonding are omitted.

Crystal data

C26H30N2O4SF(000) = 992
Mr = 466.58Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1201 reflections
a = 10.9561 (6) Åθ = 1.8–28.2°
b = 9.5665 (6) ŵ = 0.17 mm1
c = 22.9011 (12) ÅT = 292 K
β = 93.575 (3)°Block, colourless
V = 2395.6 (2) Å30.26 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer5677 independent reflections
Radiation source: fine-focus sealed tube3669 reflections with I > 2σ(I)
graphiteRint = 0.029
ω and [var phi] scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −14→14
Tmin = 0.957, Tmax = 0.967k = −11→12
21473 measured reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1095P)2 + 1.0086P] where P = (Fo2 + 2Fc2)/3
5677 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4059 (2)0.1850 (2)−0.01465 (10)0.0453 (5)
H10.43430.16660.02600.054*
C20.5190 (2)0.2068 (3)−0.04884 (11)0.0513 (6)
H2A0.57720.2644−0.02600.062*
H2B0.55730.1171−0.05520.062*
C30.4893 (2)0.2748 (3)−0.10615 (10)0.0490 (6)
C40.3873 (2)0.3516 (3)−0.11724 (10)0.0478 (6)
C50.2932 (2)0.3731 (2)−0.07271 (10)0.0444 (5)
H50.28590.4745−0.06780.053*
C60.1649 (2)0.3208 (3)−0.09247 (10)0.0459 (5)
C70.1448 (2)0.2216 (3)−0.13558 (11)0.0532 (6)
H70.21130.1804−0.15220.064*
C80.0270 (3)0.1820 (4)−0.15461 (14)0.0680 (8)
H80.01500.1150−0.18380.082*
C9−0.0707 (3)0.2415 (4)−0.13036 (17)0.0796 (10)
H9−0.14970.2155−0.14320.095*
C10−0.0529 (3)0.3394 (4)−0.08723 (18)0.0805 (10)
H10−0.11980.3792−0.07050.097*
C110.0651 (3)0.3799 (3)−0.06812 (14)0.0634 (7)
H110.07660.4470−0.03890.076*
C120.3253 (2)0.0626 (2)−0.03482 (10)0.0440 (5)
C130.3550 (2)−0.0269 (3)−0.07933 (11)0.0544 (6)
H130.4231−0.0085−0.10040.065*
C140.2841 (3)−0.1436 (3)−0.09264 (15)0.0699 (8)
H140.3051−0.2032−0.12250.084*
C150.1833 (3)−0.1722 (3)−0.06235 (16)0.0722 (9)
H150.1365−0.2514−0.07130.087*
C160.1517 (3)−0.0838 (3)−0.01875 (15)0.0698 (8)
H160.0827−0.10230.00170.084*
C170.2222 (2)0.0330 (3)−0.00502 (12)0.0563 (6)
H170.20000.09260.02460.068*
C180.3700 (2)0.4250 (3)−0.17259 (12)0.0608 (7)
C190.2455 (3)0.5885 (5)−0.22699 (16)0.0963 (13)
H19A0.30470.5682−0.25560.116*
H19B0.24360.6888−0.22090.116*
C200.1253 (5)0.5390 (10)−0.2479 (3)0.210 (4)
H20A0.11950.4404−0.24090.315*
H20B0.11320.5568−0.28910.315*
H20C0.06380.5871−0.22760.315*
C210.3374 (2)0.4067 (3)0.03114 (11)0.0508 (6)
C220.3935 (3)0.3617 (3)0.09078 (11)0.0566 (6)
H22A0.47700.33200.08630.068*
H22B0.39630.44210.11670.068*
C230.2018 (3)0.2891 (4)0.12692 (14)0.0677 (8)
H23A0.16300.31900.08980.081*
H23B0.20170.36770.15360.081*
C240.1283 (3)0.1705 (5)0.15118 (15)0.0811 (10)
H24A0.12920.09150.12460.097*
H24B0.04400.20030.15310.097*
C250.3410 (3)0.0918 (5)0.20431 (15)0.0880 (11)
H25A0.39090.07210.23980.106*
H25B0.34530.01130.17880.106*
C260.3931 (3)0.2171 (4)0.17450 (11)0.0661 (8)
H26A0.38910.29770.20000.079*
H26B0.47850.19960.16820.079*
N10.33686 (18)0.3177 (2)−0.01508 (8)0.0449 (5)
N20.32827 (18)0.2491 (2)0.11832 (8)0.0508 (5)
O10.57597 (16)0.2550 (2)−0.14448 (8)0.0655 (5)
H1A0.55640.2960−0.17510.098*
O20.4311 (2)0.4081 (3)−0.21421 (9)0.0931 (8)
O30.27914 (19)0.5182 (2)−0.17266 (9)0.0733 (6)
O40.2948 (2)0.5239 (2)0.02621 (9)0.0703 (6)
S10.18591 (8)0.11578 (13)0.22245 (4)0.0894 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0494 (13)0.0440 (13)0.0416 (11)0.0044 (10)−0.0030 (9)0.0038 (10)
C20.0460 (13)0.0507 (14)0.0563 (14)0.0030 (11)−0.0027 (11)0.0048 (11)
C30.0409 (12)0.0581 (15)0.0481 (12)−0.0064 (11)0.0041 (10)−0.0007 (11)
C40.0444 (12)0.0556 (14)0.0431 (12)−0.0040 (11)0.0004 (9)0.0086 (11)
C50.0494 (13)0.0414 (12)0.0422 (11)0.0047 (10)0.0009 (9)0.0064 (10)
C60.0476 (13)0.0462 (13)0.0440 (11)0.0069 (10)0.0036 (10)0.0127 (10)
C70.0455 (13)0.0633 (16)0.0511 (13)0.0012 (11)0.0045 (10)0.0004 (12)
C80.0566 (16)0.079 (2)0.0674 (17)−0.0105 (15)−0.0065 (13)0.0080 (15)
C90.0430 (15)0.096 (3)0.098 (2)−0.0052 (16)−0.0040 (15)0.027 (2)
C100.0493 (17)0.090 (2)0.104 (3)0.0202 (16)0.0206 (17)0.014 (2)
C110.0561 (16)0.0626 (17)0.0726 (18)0.0134 (13)0.0131 (13)0.0026 (14)
C120.0491 (13)0.0402 (12)0.0422 (11)0.0059 (10)−0.0014 (9)0.0066 (10)
C130.0545 (14)0.0551 (15)0.0537 (13)0.0040 (12)0.0035 (11)−0.0063 (12)
C140.0706 (19)0.0600 (17)0.0775 (19)0.0073 (15)−0.0081 (15)−0.0180 (15)
C150.0669 (19)0.0492 (16)0.098 (2)−0.0057 (14)−0.0158 (17)−0.0008 (16)
C160.0587 (17)0.0653 (18)0.086 (2)−0.0083 (14)0.0083 (15)0.0139 (17)
C170.0602 (16)0.0533 (15)0.0562 (14)0.0028 (12)0.0096 (12)0.0024 (12)
C180.0461 (14)0.083 (2)0.0528 (14)−0.0113 (14)−0.0002 (11)0.0193 (14)
C190.090 (2)0.122 (3)0.074 (2)−0.001 (2)−0.0136 (18)0.054 (2)
C200.161 (6)0.285 (9)0.170 (6)−0.070 (6)−0.097 (5)0.132 (6)
C210.0545 (14)0.0468 (14)0.0512 (13)−0.0051 (11)0.0032 (11)−0.0029 (11)
C220.0628 (16)0.0607 (16)0.0457 (13)−0.0097 (13)−0.0010 (11)−0.0088 (12)
C230.0533 (15)0.085 (2)0.0649 (17)0.0086 (15)0.0013 (13)−0.0027 (15)
C240.0572 (17)0.115 (3)0.0716 (19)−0.0078 (18)0.0067 (14)0.003 (2)
C250.075 (2)0.125 (3)0.0650 (18)0.014 (2)0.0171 (16)0.027 (2)
C260.0517 (15)0.100 (2)0.0464 (13)0.0049 (15)0.0036 (11)0.0035 (14)
N10.0541 (11)0.0394 (10)0.0407 (9)0.0032 (8)−0.0006 (8)0.0025 (8)
N20.0490 (11)0.0620 (13)0.0415 (10)−0.0003 (10)0.0031 (8)−0.0024 (9)
O10.0481 (10)0.0906 (15)0.0588 (11)0.0004 (10)0.0102 (8)0.0043 (10)
O20.0701 (14)0.153 (2)0.0575 (12)0.0105 (15)0.0187 (10)0.0351 (14)
O30.0670 (12)0.0914 (15)0.0606 (11)0.0040 (11)−0.0022 (9)0.0363 (11)
O40.0921 (15)0.0517 (12)0.0667 (12)0.0117 (10)0.0025 (11)−0.0090 (9)
S10.0735 (6)0.1382 (9)0.0589 (5)−0.0044 (5)0.0220 (4)0.0086 (5)

Geometric parameters (Å, °)

C1—N11.477 (3)C16—C171.383 (4)
C1—C21.521 (3)C16—H160.93
C1—C121.521 (3)C17—H170.93
C1—H10.98C18—O21.209 (3)
C2—C31.483 (3)C18—O31.336 (4)
C2—H2A0.97C19—O31.442 (3)
C2—H2B0.97C19—C201.452 (4)
C3—O11.346 (3)C19—H19A0.97
C3—C41.348 (3)C19—H19B0.97
C4—C181.451 (3)C20—H20A0.96
C4—C51.508 (3)C20—H20B0.96
C5—N11.474 (3)C20—H20C0.96
C5—C61.533 (3)C21—O41.217 (3)
C5—H50.98C21—N11.359 (3)
C6—C71.377 (4)C21—C221.524 (4)
C6—C111.379 (4)C22—N21.458 (3)
C7—C81.389 (4)C22—H22A0.97
C7—H70.93C22—H22B0.97
C8—C91.362 (5)C23—N21.462 (3)
C8—H80.93C23—C241.517 (5)
C9—C101.366 (5)C23—H23A0.97
C9—H90.93C23—H23B0.97
C10—C111.394 (5)C24—S11.791 (4)
C10—H100.93C24—H24A0.97
C11—H110.93C24—H24B0.97
C12—C131.385 (3)C25—C261.509 (5)
C12—C171.385 (4)C25—S11.789 (3)
C13—C141.383 (4)C25—H25A0.97
C13—H130.93C25—H25B0.97
C14—C151.368 (5)C26—N21.463 (3)
C14—H140.93C26—H26A0.97
C15—C161.370 (5)C26—H26B0.97
C15—H150.93O1—H1A0.82
N1—C1—C2108.19 (19)C12—C17—H17119.5
N1—C1—C12111.88 (19)O2—C18—O3122.5 (3)
C2—C1—C12115.2 (2)O2—C18—C4125.1 (3)
N1—C1—H1107.1O3—C18—C4112.4 (2)
C2—C1—H1107.1O3—C19—C20108.1 (3)
C12—C1—H1107.1O3—C19—H19A110.1
C3—C2—C1111.97 (19)C20—C19—H19A110.1
C3—C2—H2A109.2O3—C19—H19B110.1
C1—C2—H2A109.2C20—C19—H19B110.1
C3—C2—H2B109.2H19A—C19—H19B108.4
C1—C2—H2B109.2C19—C20—H20A109.5
H2A—C2—H2B107.9C19—C20—H20B109.5
O1—C3—C4124.3 (2)H20A—C20—H20B109.5
O1—C3—C2113.0 (2)C19—C20—H20C109.5
C4—C3—C2122.7 (2)H20A—C20—H20C109.5
C3—C4—C18119.3 (2)H20B—C20—H20C109.5
C3—C4—C5122.7 (2)O4—C21—N1121.5 (2)
C18—C4—C5117.8 (2)O4—C21—C22118.3 (2)
N1—C5—C4111.03 (18)N1—C21—C22120.2 (2)
N1—C5—C6112.77 (18)N2—C22—C21114.6 (2)
C4—C5—C6114.10 (19)N2—C22—H22A108.6
N1—C5—H5106.1C21—C22—H22A108.6
C4—C5—H5106.1N2—C22—H22B108.6
C6—C5—H5106.1C21—C22—H22B108.6
C7—C6—C11118.5 (2)H22A—C22—H22B107.6
C7—C6—C5122.6 (2)N2—C23—C24112.5 (3)
C11—C6—C5118.8 (2)N2—C23—H23A109.1
C6—C7—C8121.1 (3)C24—C23—H23A109.1
C6—C7—H7119.4N2—C23—H23B109.1
C8—C7—H7119.4C24—C23—H23B109.1
C9—C8—C7119.8 (3)H23A—C23—H23B107.8
C9—C8—H8120.1C23—C24—S1112.8 (2)
C7—C8—H8120.1C23—C24—H24A109.0
C8—C9—C10120.0 (3)S1—C24—H24A109.0
C8—C9—H9120.0C23—C24—H24B109.0
C10—C9—H9120.0S1—C24—H24B109.0
C9—C10—C11120.4 (3)H24A—C24—H24B107.8
C9—C10—H10119.8C26—C25—S1113.3 (3)
C11—C10—H10119.8C26—C25—H25A108.9
C6—C11—C10120.1 (3)S1—C25—H25A108.9
C6—C11—H11119.9C26—C25—H25B108.9
C10—C11—H11119.9S1—C25—H25B108.9
C13—C12—C17118.2 (2)H25A—C25—H25B107.7
C13—C12—C1122.8 (2)N2—C26—C25112.8 (3)
C17—C12—C1118.9 (2)N2—C26—H26A109.0
C14—C13—C12120.4 (3)C25—C26—H26A109.0
C14—C13—H13119.8N2—C26—H26B109.0
C12—C13—H13119.8C25—C26—H26B109.0
C15—C14—C13120.7 (3)H26A—C26—H26B107.8
C15—C14—H14119.7C21—N1—C5117.2 (2)
C13—C14—H14119.7C21—N1—C1123.8 (2)
C14—C15—C16119.7 (3)C5—N1—C1116.92 (18)
C14—C15—H15120.2C22—N2—C23111.0 (2)
C16—C15—H15120.2C22—N2—C26108.1 (2)
C15—C16—C17120.1 (3)C23—N2—C26110.4 (2)
C15—C16—H16119.9C3—O1—H1A109.5
C17—C16—H16119.9C18—O3—C19117.6 (3)
C16—C17—C12120.9 (3)C25—S1—C2496.42 (16)
C16—C17—H17119.5
N1—C1—C2—C3−48.5 (3)C13—C12—C17—C161.0 (4)
C12—C1—C2—C377.5 (3)C1—C12—C17—C16−174.8 (2)
C1—C2—C3—O1−159.7 (2)C3—C4—C18—O211.3 (5)
C1—C2—C3—C422.2 (3)C5—C4—C18—O2−172.8 (3)
O1—C3—C4—C18−3.2 (4)C3—C4—C18—O3−167.2 (2)
C2—C3—C4—C18174.5 (2)C5—C4—C18—O38.8 (3)
O1—C3—C4—C5−179.0 (2)O4—C21—C22—N2114.2 (3)
C2—C3—C4—C5−1.2 (4)N1—C21—C22—N2−66.5 (3)
C3—C4—C5—N18.2 (3)N2—C23—C24—S163.1 (3)
C18—C4—C5—N1−167.6 (2)S1—C25—C26—N2−62.4 (3)
C3—C4—C5—C6−120.6 (3)O4—C21—N1—C55.6 (4)
C18—C4—C5—C663.6 (3)C22—C21—N1—C5−173.6 (2)
N1—C5—C6—C7−105.9 (3)O4—C21—N1—C1168.7 (2)
C4—C5—C6—C722.0 (3)C22—C21—N1—C1−10.6 (4)
N1—C5—C6—C1177.1 (3)C4—C5—N1—C21125.2 (2)
C4—C5—C6—C11−155.0 (2)C6—C5—N1—C21−105.3 (2)
C11—C6—C7—C80.4 (4)C4—C5—N1—C1−39.1 (3)
C5—C6—C7—C8−176.5 (2)C6—C5—N1—C190.4 (2)
C6—C7—C8—C9−0.2 (4)C2—C1—N1—C21−103.0 (2)
C7—C8—C9—C10−0.3 (5)C12—C1—N1—C21129.1 (2)
C8—C9—C10—C110.6 (5)C2—C1—N1—C560.1 (3)
C7—C6—C11—C10−0.2 (4)C12—C1—N1—C5−67.8 (2)
C5—C6—C11—C10176.9 (3)C21—C22—N2—C23−59.2 (3)
C9—C10—C11—C6−0.3 (5)C21—C22—N2—C26179.6 (2)
N1—C1—C12—C13126.8 (2)C24—C23—N2—C22175.6 (2)
C2—C1—C12—C132.8 (3)C24—C23—N2—C26−64.6 (3)
N1—C1—C12—C17−57.6 (3)C25—C26—N2—C22−174.2 (2)
C2—C1—C12—C17178.3 (2)C25—C26—N2—C2364.2 (3)
C17—C12—C13—C14−1.1 (4)O2—C18—O3—C197.2 (4)
C1—C12—C13—C14174.5 (2)C4—C18—O3—C19−174.3 (3)
C12—C13—C14—C150.3 (4)C20—C19—O3—C18110.8 (6)
C13—C14—C15—C160.6 (5)C26—C25—S1—C2451.6 (3)
C14—C15—C16—C17−0.7 (5)C23—C24—S1—C25−51.8 (3)
C15—C16—C17—C12−0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.922.627 (3)144
C2—H2A···O4i0.972.463.306 (3)145
C10—H10···O4ii0.932.413.339 (4)178

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5116).

References

  • Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett.18, 6542–6548. [PubMed]
  • Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett.20, 2242–2249. [PubMed]
  • Aridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009). Acta Cryst. E65, o3180–o3181. [PMC free article] [PubMed]
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chow, Y. L., Colon, C. J. & Tam, J. N. S. (1968). Can. J. Chem.46, 2821–2825.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography