PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1886.
Published online 2010 July 3. doi:  10.1107/S1600536810025328
PMCID: PMC3007351

6,7,8,9-Tetra­hydro-4b,9b-dihy­droxy­indano[1,2-b]indoline-9,10-dione monohydrate

Abstract

In the title compound, C15H13NO4·H2O, the organic mol­ecule adopts a V-shaped conformation in which the dihedral angle between the five-membered rings is 68.33 (5)°. The cyclo­hexenone ring adopts an envelope conformation, with one of the methyl­ene C atoms displaced by 0.607 (4) Å from the plane through the other atoms. In the crystal, inter­molecular N—H(...)(O,O) and O—H(...)O hydrogen bonds link the components into (001) sheeets and C–H(...)O inter­actions and aromatic π–π stacking [centroid–centroid separation = 3.6176 (19) Å] help to consolidate the packing.

Related literature

For background to ninhydrin, see: Friedman (1967 [triangle]); Moubasher (1948 [triangle]). For a related structure, see: Black et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1886-scheme1.jpg

Experimental

Crystal data

  • C15H13NO4·H2O
  • M r = 289.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1886-efi1.jpg
  • a = 10.703 (2) Å
  • b = 13.275 (4) Å
  • c = 19.683 (5) Å
  • V = 2796.6 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.30 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.970, T max = 0.978
  • 17463 measured reflections
  • 2532 independent reflections
  • 1576 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.135
  • S = 1.08
  • 2532 reflections
  • 206 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025328/hb5521sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025328/hb5521Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Higher Education Commission (HEC), Pakistan, for financial assistance to KM under the National Research Program for Universities.

supplementary crystallographic information

Comment

The reaction of ninhydrin with 4-aminophenol in acetic acid, or 4-amino benzoic acid in benzene gave the corresponding 2-hydroxy-2-anilino-indane-1,3-diones (Moubasher et al., 1948). Friedman (1967) elaborated on these findings and reported that ortho and para activated anilines gave imines corresponding to the dehydration products of hydroxy compounds. Ninhydrin is used to detect α-amino acids, proteins and dipeptides. The title compound (I), (Fig. 1) is being reported in connection with our plan to synthesize various derivatives of ninhydrin.

The crystal structure of (II) i.e. 5, 10-dihydro-7, 9-dimethoxy-4 b, 9 b, 10-trihydroxy-indeno[1,2-b]indole has been published (Black et al., 1994). The compound (I) differs from (II) due to presence of two oxo groups instead of hydroxy and methoxy at position-9 & 10 respectively, H-atom instead of methoxy function at position-7 and due to presence of three hydrogen at position-6,7 & 8 of indole moiety.

In the organic part of title compound, there are two five membered and two six memberede rings. The carbon containing five membered A (C1/C6/C7/C8/C15) is fused with phenyl B (C1—C6) ring and with heterocyclic ring C (C15/C8/C9/C14/N1). The cyclohexenone ring D (C9—C14) is fused with the ring C. The ring A and B are planar with r. m. s. deviation of 0.0256 and 0.0091 Å, respectively and oriented at a dihedral angle of 3.07 (18)° with each other. The heterocyclic ring C is planar with r. m. s. deviation of 0.0163 Å. The group E (C9—C11/C13/C14) of cyclohexenone ring is also planar with r. m. s. deviation of 0.0206 Å and inclined with C at a dihedral angle of 1.55 (17)°. The C-atom labeled as C12 is at a distance of 0.6073 (40) Å from the mean square plane of E. There exist π···π interaction between rings B & C at a distance of 3.6176 (19)Å as the organic part is mainly in V-shape. The compound is stabilized due to complex form of H-bondings (Table 1, Fig. 2).

Experimental

3-Amino-2-cyclohexene-1-one (0.10 g, 0.89 mmol) was added to a stirred solution of ninhydrin (0.16 g, 0.89 mmol) in propanol (10 ml) and heated under reflux for 35 minuts. After completion of reaction, the mixture was cooled at room temperature. The crystalline solid was collected by suction filtration. Through washing with hot ethanol afforded the white crystalline solid (0.22 g, 85%), m.p. 526 K. Colourless prisms of (I) were grown by diffusion method in ethyl acetate:benzene (1:1) system along with few drops of ethanol.

Refinement

The coordinates of H-atoms of amine and hydroxy groups were refined and the other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by circles of arbitrary radius.
Fig. 2.
The partial packing of (I).

Crystal data

C15H13NO4·H2OF(000) = 1216
Mr = 289.28Dx = 1.369 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1576 reflections
a = 10.703 (2) Åθ = 2.7–25.3°
b = 13.275 (4) ŵ = 0.10 mm1
c = 19.683 (5) ÅT = 296 K
V = 2796.6 (12) Å3Prism, colourless
Z = 80.30 × 0.22 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2532 independent reflections
Radiation source: fine-focus sealed tube1576 reflections with I > 2σ(I)
graphiteRint = 0.066
Detector resolution: 8.20 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −15→15
Tmin = 0.970, Tmax = 0.978l = −23→23
17463 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0498P)2 + 1.2061P] where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6918 (2)−0.15555 (15)0.11236 (10)0.0602 (8)
O20.91068 (17)−0.08706 (14)0.03362 (9)0.0464 (7)
O30.64800 (18)−0.14565 (14)−0.04188 (10)0.0540 (7)
O40.98666 (17)0.09354 (16)0.09227 (9)0.0498 (7)
N10.8012 (2)0.15460 (17)0.04090 (11)0.0402 (7)
C10.7997 (2)0.0847 (2)0.15639 (13)0.0416 (9)
C20.8110 (3)0.1600 (2)0.20487 (14)0.0563 (11)
C30.7442 (4)0.1498 (3)0.26471 (15)0.0681 (13)
C40.6683 (3)0.0675 (3)0.27637 (16)0.0692 (13)
C50.6593 (3)−0.0089 (3)0.22942 (14)0.0582 (11)
C60.7266 (2)0.0012 (2)0.16905 (12)0.0430 (9)
C70.7359 (2)−0.07177 (19)0.11328 (13)0.0400 (9)
C80.8128 (2)−0.02380 (18)0.05584 (12)0.0366 (8)
C90.7294 (2)0.00822 (18)−0.00174 (12)0.0330 (8)
C100.6574 (2)−0.0522 (2)−0.04613 (13)0.0395 (9)
C110.5833 (3)0.0030 (2)−0.10052 (14)0.0482 (10)
C120.6310 (3)0.1070 (2)−0.11767 (14)0.0518 (10)
C130.6515 (3)0.16996 (19)−0.05470 (13)0.0450 (9)
C140.7286 (2)0.11153 (18)−0.00559 (12)0.0353 (8)
C150.8580 (2)0.08050 (19)0.08678 (12)0.0382 (8)
O50.4998 (3)0.2705 (2)0.12020 (14)0.0943 (11)
H10.808 (2)0.220 (2)0.0473 (13)0.0483*
H20.861920.215680.197390.0676*
H2A0.932 (3)−0.129 (2)0.0658 (15)0.0556*
H30.750620.199560.297810.0817*
H40.622570.063690.316480.0830*
H4A1.018 (3)0.085 (2)0.0537 (15)0.0597*
H50.61011−0.065320.237620.0701*
H11A0.58359−0.03738−0.141580.0578*
H11B0.497240.00876−0.085480.0578*
H12A0.571260.14056−0.147000.0621*
H12B0.709140.10108−0.142310.0621*
H13A0.693910.23208−0.066590.0540*
H13B0.571730.18695−0.034310.0540*
H510.452 (3)0.224 (2)0.0954 (17)0.1131*
H520.526 (4)0.239 (3)0.1564 (14)0.1131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0834 (15)0.0458 (13)0.0515 (13)−0.0033 (11)0.0135 (11)0.0065 (10)
O20.0484 (11)0.0525 (12)0.0382 (11)0.0207 (9)0.0053 (9)0.0057 (9)
O30.0633 (13)0.0389 (11)0.0598 (13)−0.0041 (9)−0.0089 (10)−0.0009 (10)
O40.0396 (11)0.0760 (14)0.0337 (10)−0.0043 (9)−0.0021 (8)−0.0020 (10)
N10.0501 (13)0.0359 (12)0.0347 (12)−0.0002 (10)−0.0058 (10)0.0002 (10)
C10.0455 (15)0.0480 (17)0.0314 (14)0.0096 (13)−0.0008 (12)0.0009 (12)
C20.077 (2)0.0570 (19)0.0349 (16)0.0064 (16)−0.0027 (15)−0.0028 (14)
C30.099 (3)0.068 (2)0.0373 (18)0.020 (2)−0.0008 (18)−0.0101 (16)
C40.073 (2)0.097 (3)0.0377 (17)0.015 (2)0.0149 (16)0.0000 (18)
C50.0555 (19)0.080 (2)0.0392 (16)0.0044 (16)0.0089 (14)0.0058 (16)
C60.0424 (16)0.0544 (17)0.0321 (14)0.0108 (13)0.0018 (12)0.0031 (13)
C70.0449 (15)0.0399 (16)0.0352 (15)0.0082 (12)0.0020 (12)0.0054 (12)
C80.0376 (14)0.0393 (14)0.0328 (14)0.0089 (11)0.0035 (11)0.0011 (11)
C90.0342 (13)0.0357 (14)0.0291 (12)0.0029 (11)0.0013 (10)0.0014 (10)
C100.0373 (15)0.0454 (16)0.0357 (14)0.0021 (12)0.0034 (12)−0.0018 (12)
C110.0462 (16)0.0570 (18)0.0414 (16)0.0024 (14)−0.0084 (13)−0.0042 (14)
C120.0590 (18)0.0549 (18)0.0415 (16)0.0024 (14)−0.0110 (14)0.0083 (14)
C130.0486 (16)0.0420 (16)0.0445 (16)0.0051 (12)−0.0083 (13)0.0063 (12)
C140.0347 (14)0.0417 (15)0.0296 (13)0.0015 (11)0.0030 (11)0.0009 (11)
C150.0385 (15)0.0460 (16)0.0301 (13)0.0030 (12)−0.0009 (11)0.0001 (11)
O50.122 (2)0.090 (2)0.0708 (18)−0.0540 (17)−0.0238 (16)0.0200 (14)

Geometric parameters (Å, °)

O1—C71.208 (3)C7—C81.537 (3)
O2—C81.412 (3)C8—C91.504 (3)
O3—C101.247 (3)C8—C151.588 (3)
O4—C151.392 (3)C9—C141.374 (3)
O2—H2A0.87 (3)C9—C101.414 (3)
O4—H4A0.84 (3)C10—C111.521 (4)
O5—H510.94 (3)C11—C121.510 (4)
O5—H520.87 (3)C12—C131.511 (4)
N1—C141.330 (3)C13—C141.489 (4)
N1—C151.467 (3)C2—H20.9300
N1—H10.88 (3)C3—H30.9300
C1—C61.380 (4)C4—H40.9300
C1—C21.387 (4)C5—H50.9300
C1—C151.507 (3)C11—H11B0.9700
C2—C31.385 (4)C11—H11A0.9700
C3—C41.381 (6)C12—H12A0.9700
C4—C51.376 (5)C12—H12B0.9700
C5—C61.396 (4)C13—H13B0.9700
C6—C71.467 (4)C13—H13A0.9700
C8—O2—H2A110 (2)C12—C13—C14109.0 (2)
C15—O4—H4A108 (2)N1—C14—C13123.1 (2)
H51—O5—H52107 (3)N1—C14—C9112.8 (2)
C14—N1—C15112.2 (2)C9—C14—C13124.0 (2)
C15—N1—H1122.6 (16)N1—C15—C8102.84 (18)
C14—N1—H1124.8 (16)C1—C15—C8104.77 (19)
C2—C1—C6120.3 (2)O4—C15—N1112.0 (2)
C2—C1—C15128.0 (2)O4—C15—C1109.54 (19)
C6—C1—C15111.7 (2)N1—C15—C1111.31 (19)
C1—C2—C3118.0 (3)O4—C15—C8116.07 (19)
C2—C3—C4121.5 (3)C1—C2—H2121.00
C3—C4—C5120.9 (3)C3—C2—H2121.00
C4—C5—C6117.7 (3)C4—C3—H3119.00
C5—C6—C7127.5 (3)C2—C3—H3119.00
C1—C6—C5121.6 (3)C3—C4—H4120.00
C1—C6—C7110.9 (2)C5—C4—H4120.00
C6—C7—C8108.3 (2)C4—C5—H5121.00
O1—C7—C6126.3 (2)C6—C5—H5121.00
O1—C7—C8125.4 (2)C10—C11—H11B109.00
O2—C8—C9112.03 (19)C12—C11—H11A109.00
O2—C8—C7112.26 (19)C12—C11—H11B108.00
C7—C8—C9110.71 (18)H11A—C11—H11B108.00
C7—C8—C15104.02 (19)C10—C11—H11A109.00
C9—C8—C15102.91 (19)C11—C12—H12B109.00
O2—C8—C15114.29 (18)C13—C12—H12A109.00
C8—C9—C14109.1 (2)C11—C12—H12A109.00
C10—C9—C14121.9 (2)H12A—C12—H12B108.00
C8—C9—C10129.0 (2)C13—C12—H12B109.00
O3—C10—C9124.5 (2)C12—C13—H13A110.00
O3—C10—C11119.0 (2)C12—C13—H13B110.00
C9—C10—C11116.5 (2)C14—C13—H13B110.00
C10—C11—C12114.9 (2)H13A—C13—H13B108.00
C11—C12—C13111.8 (2)C14—C13—H13A110.00
C15—N1—C14—C9−3.2 (3)C6—C7—C8—C155.2 (2)
C15—N1—C14—C13174.7 (2)O2—C8—C9—C1060.0 (3)
C14—N1—C15—O4129.3 (2)O2—C8—C9—C14−121.6 (2)
C14—N1—C15—C1−107.7 (2)C7—C8—C9—C10−66.1 (3)
C14—N1—C15—C84.0 (2)C7—C8—C9—C14112.3 (2)
C6—C1—C2—C3−1.9 (4)C15—C8—C9—C10−176.7 (2)
C15—C1—C2—C3177.3 (3)C15—C8—C9—C141.7 (2)
C2—C1—C6—C52.0 (4)O2—C8—C15—O4−4.1 (3)
C2—C1—C6—C7−175.7 (2)O2—C8—C15—N1118.5 (2)
C15—C1—C6—C5−177.3 (2)O2—C8—C15—C1−125.1 (2)
C15—C1—C6—C75.1 (3)C7—C8—C15—O4118.6 (2)
C2—C1—C15—O454.1 (3)C7—C8—C15—N1−118.75 (19)
C2—C1—C15—N1−70.3 (3)C7—C8—C15—C1−2.3 (2)
C2—C1—C15—C8179.3 (2)C9—C8—C15—O4−125.8 (2)
C6—C1—C15—O4−126.7 (2)C9—C8—C15—N1−3.2 (2)
C6—C1—C15—N1108.9 (2)C9—C8—C15—C1113.25 (19)
C6—C1—C15—C8−1.5 (3)C8—C9—C10—O33.4 (4)
C1—C2—C3—C40.0 (5)C8—C9—C10—C11−179.2 (2)
C2—C3—C4—C51.9 (6)C14—C9—C10—O3−174.8 (2)
C3—C4—C5—C6−1.8 (5)C14—C9—C10—C112.6 (3)
C4—C5—C6—C1−0.1 (4)C8—C9—C14—N10.8 (3)
C4—C5—C6—C7177.1 (3)C8—C9—C14—C13−177.1 (2)
C1—C6—C7—O1173.0 (2)C10—C9—C14—N1179.3 (2)
C1—C6—C7—C8−6.5 (3)C10—C9—C14—C131.4 (4)
C5—C6—C7—O1−4.4 (4)O3—C10—C11—C12−160.4 (2)
C5—C6—C7—C8176.1 (3)C9—C10—C11—C1222.0 (3)
O1—C7—C8—O2−50.3 (3)C10—C11—C12—C13−49.8 (3)
O1—C7—C8—C975.7 (3)C11—C12—C13—C1450.8 (3)
O1—C7—C8—C15−174.4 (2)C12—C13—C14—N1153.7 (2)
C6—C7—C8—O2129.2 (2)C12—C13—C14—C9−28.7 (3)
C6—C7—C8—C9−104.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (3)2.09 (3)2.887 (3)150 (2)
N1—H1···O3i0.88 (3)2.55 (3)3.159 (3)127 (2)
O2—H2A···O5ii0.87 (3)1.86 (3)2.720 (3)168 (3)
O4—H4A···O2iii0.84 (3)1.88 (3)2.712 (3)171 (3)
O5—H51···O3iv0.94 (3)1.83 (3)2.762 (4)174 (3)
C2—H2···O1i0.932.463.052 (3)122
C4—H4···O4v0.932.343.253 (4)165
C13—H13A···O3i0.972.393.265 (4)149

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+3/2, y−1/2, z; (iii) −x+2, −y, −z; (iv) −x+1, −y, −z; (v) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5521).

References

  • Black, D. St C., Bowyer, M. C., Condie, G. C., Craig, D. C. & Kumar, N. (1994). Tetrahedron, 50, 10983–10994.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Friedman, M. (1967). Can. J. Chem.45, 2271–2275.
  • Moubasher, R. (1948). J. Chem. Soc. pp. 1038–1041.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography