PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m931.
Published online 2010 July 14. doi:  10.1107/S1600536810026978
PMCID: PMC3007350

catena-Poly[[triphenyl­tin(IV)]-μ-2-(cyclo­hexyl­amino­carbon­yl)benzoato-κ2 O 1:O 2]

Abstract

In the title polymeric complex, [Sn(C6H5)3(C14H16NO3)]n, adjacent triphenyl­tin cations are bridged by the N-cyclo­hexyl­phthalamate anion through the carboxyl­ate and carbonyl O atoms, forming a helical chain running along the b axis. The amide N atom is a hydrogen-bond donor to the uncoordinated carboxyl­ate O atom. The geometry at the five-coordinate Sn atom is trans-C3SnO2 trigonal-bipyramidal.

Related literature

For a review on organotin carboxyl­ates, see: Tiekink (1991 [triangle], 1994 [triangle]). Triphenyl­tin aryl­carboxyl­ates generally exist as monomeric mol­ecules; see: Ng et al. (1986 [triangle]). For the synthesis of N-cyclo­hexyl­phthalamic acid, see: Dolzhenko et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m931-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C14H16NO3)]
  • M r = 596.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m931-efi1.jpg
  • a = 9.8574 (5) Å
  • b = 16.0734 (8) Å
  • c = 17.1669 (8) Å
  • β = 99.447 (1)°
  • V = 2683.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 100 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.694, T max = 0.827
  • 25326 measured reflections
  • 6165 independent reflections
  • 5710 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.049
  • S = 1.02
  • 6165 reflections
  • 338 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026978/xu2796sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026978/xu2796Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Allama Iqbal Open University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Triphenyltin aryl-carboxylates commonly exist as four-coordinate tetrahedral compounds unlike the alkyl-carboxylates, which adopt carboxylate-bridged polymeric chains structures (Ng et al., 1986). Occasionally, the aryl-carboxylate anion bears a potential donor unit such as, in the present case, an amido group; such a donor group can interact with adjacent molecules to generate polymeric chain motifs (Tiekink, 1991; 1994). In the present N-cyclohexylphthalimic acid derivative (Scheme I), the amido oxygen atom engages in bonding to generate a chain motif (Fig. 1). The tin atom is displaced out of the C3Sn girdle in the direction of the covalently-bonded oxygen atom by 0.200 (1) Å; the Sn–Ocovalent bond is significantly shorter than the Sn–Odative bond.

Experimental

N-Cyclohexylphthalamic acid was synthesized from the reaction of phthalic anhydride and cyclohexylamine in ethyl acetate by using a reported procedure (Dolzhenko et al., 2003).

Triphenyltin hydroxide (1 mmol, 0.37 g) and N-cyclohexylphthalamic acid (1 mmol, 0.25 g) were heated in toluene (50 ml) for 6 h in a Dean-Stark water-separator. The solvent was then removed and the solid material recrystallized from a chloroform and n-hexane (3:1) mixture to furnish crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amido H-atom was located in a difference Fourier map, and was refined with N–H 0.86±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Sn(C6H5)3(C14H16NO3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(C6H5)3(C14H16NO3)]F(000) = 1216
Mr = 596.27Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9925 reflections
a = 9.8574 (5) Åθ = 2.4–28.3°
b = 16.0734 (8) ŵ = 0.99 mm1
c = 17.1669 (8) ÅT = 100 K
β = 99.447 (1)°Block, colorless
V = 2683.1 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer6165 independent reflections
Radiation source: fine-focus sealed tube5710 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.694, Tmax = 0.827k = −20→20
25326 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0227P)2 + 1.7091P] where P = (Fo2 + 2Fc2)/3
6165 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = −0.50 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.914994 (9)0.372319 (5)0.750433 (5)0.01199 (4)
O10.88805 (10)0.26134 (6)0.67977 (6)0.0167 (2)
O20.66233 (11)0.26088 (6)0.67972 (6)0.0181 (2)
O30.53077 (10)−0.00855 (6)0.66684 (6)0.0160 (2)
N10.51088 (14)0.12682 (7)0.69698 (8)0.0177 (3)
H10.5391 (19)0.1765 (7)0.6891 (11)0.022 (5)*
C10.78221 (14)0.45043 (8)0.67164 (8)0.0150 (3)
C20.78027 (18)0.44190 (10)0.59071 (9)0.0242 (3)
H20.83150.39850.57170.029*
C30.70416 (19)0.49620 (11)0.53752 (10)0.0293 (4)
H30.70340.48950.48250.035*
C40.62957 (17)0.55996 (10)0.56442 (10)0.0257 (3)
H40.57880.59750.52800.031*
C50.62943 (15)0.56869 (9)0.64469 (10)0.0209 (3)
H50.57810.61220.66350.025*
C60.70430 (14)0.51388 (9)0.69779 (9)0.0170 (3)
H60.70240.51970.75270.020*
C71.12405 (15)0.37813 (8)0.73368 (9)0.0143 (3)
C81.22988 (15)0.39979 (9)0.79465 (9)0.0175 (3)
H81.20960.40930.84610.021*
C91.36463 (16)0.40761 (10)0.78118 (10)0.0230 (3)
H91.43560.42160.82360.028*
C101.39583 (16)0.39509 (9)0.70631 (10)0.0232 (3)
H101.48800.40020.69730.028*
C111.29187 (18)0.37515 (9)0.64477 (10)0.0230 (3)
H111.31240.36770.59310.028*
C121.15697 (16)0.36592 (9)0.65838 (9)0.0188 (3)
H121.08660.35120.61590.023*
C130.85936 (15)0.32474 (8)0.85593 (8)0.0147 (3)
C140.72102 (16)0.32227 (9)0.86407 (9)0.0180 (3)
H140.65230.33380.81980.022*
C150.68262 (17)0.30300 (10)0.93644 (9)0.0226 (3)
H150.58800.30180.94130.027*
C160.78136 (19)0.28563 (10)1.00104 (9)0.0245 (3)
H160.75490.27371.05060.029*
C170.91974 (18)0.28560 (10)0.99353 (9)0.0244 (3)
H170.98780.27181.03750.029*
C180.95815 (16)0.30584 (9)0.92144 (9)0.0198 (3)
H181.05280.30680.91680.024*
C190.76680 (15)0.22960 (8)0.66099 (8)0.0144 (3)
C200.76215 (15)0.15244 (9)0.60958 (8)0.0140 (3)
C210.86142 (16)0.15062 (10)0.55998 (9)0.0195 (3)
H210.92680.19440.56330.023*
C220.86751 (17)0.08691 (10)0.50612 (9)0.0224 (3)
H220.93540.08770.47270.027*
C230.77383 (17)0.02216 (9)0.50143 (9)0.0200 (3)
H230.7757−0.02120.46400.024*
C240.67742 (15)0.02117 (9)0.55164 (8)0.0161 (3)
H240.6152−0.02430.54900.019*
C250.66847 (14)0.08489 (8)0.60619 (8)0.0132 (3)
C260.56431 (14)0.06626 (8)0.66012 (8)0.0134 (3)
C270.41889 (15)0.11215 (9)0.75476 (9)0.0181 (3)
H270.40340.05090.75850.022*
C280.48651 (19)0.14361 (12)0.83514 (10)0.0293 (4)
H28A0.50670.20370.83170.035*
H28B0.57460.11400.85160.035*
C290.3924 (2)0.12963 (12)0.89671 (11)0.0342 (4)
H29A0.37910.06920.90360.041*
H29B0.43650.15280.94810.041*
C300.2540 (2)0.17094 (11)0.87143 (12)0.0337 (4)
H30A0.19310.15780.91030.040*
H30B0.26640.23200.87080.040*
C310.18684 (19)0.14199 (13)0.79050 (13)0.0357 (4)
H31A0.10050.17340.77420.043*
H31B0.16300.08230.79300.043*
C320.28089 (18)0.15421 (12)0.72883 (11)0.0298 (4)
H32B0.23640.13050.67770.036*
H32C0.29520.21440.72120.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01138 (5)0.01205 (5)0.01288 (5)0.00013 (3)0.00303 (4)0.00005 (3)
O10.0158 (5)0.0156 (5)0.0186 (5)−0.0014 (4)0.0025 (4)−0.0032 (4)
O20.0180 (5)0.0149 (5)0.0229 (5)−0.0007 (4)0.0081 (4)−0.0011 (4)
O30.0181 (5)0.0133 (4)0.0169 (5)−0.0009 (4)0.0042 (4)0.0016 (4)
N10.0202 (6)0.0132 (6)0.0222 (6)−0.0013 (5)0.0109 (5)0.0013 (5)
C10.0143 (7)0.0140 (6)0.0167 (7)−0.0009 (5)0.0019 (5)0.0015 (5)
C20.0300 (9)0.0236 (8)0.0195 (8)0.0096 (6)0.0057 (6)0.0005 (6)
C30.0373 (10)0.0334 (9)0.0171 (7)0.0116 (7)0.0040 (7)0.0050 (7)
C40.0249 (8)0.0257 (8)0.0262 (8)0.0068 (6)0.0035 (6)0.0092 (6)
C50.0152 (7)0.0186 (7)0.0296 (8)0.0033 (5)0.0056 (6)0.0011 (6)
C60.0129 (6)0.0201 (7)0.0185 (7)−0.0011 (5)0.0038 (5)−0.0020 (5)
C70.0144 (6)0.0116 (6)0.0175 (7)0.0009 (5)0.0042 (5)0.0000 (5)
C80.0175 (7)0.0176 (7)0.0178 (7)0.0014 (5)0.0043 (6)−0.0015 (5)
C90.0158 (7)0.0223 (7)0.0300 (8)0.0001 (6)0.0012 (6)−0.0013 (6)
C100.0166 (7)0.0176 (7)0.0379 (9)−0.0013 (6)0.0124 (7)0.0003 (6)
C110.0278 (8)0.0197 (7)0.0253 (8)−0.0019 (6)0.0158 (7)−0.0014 (6)
C120.0203 (7)0.0189 (7)0.0180 (7)−0.0022 (5)0.0056 (6)−0.0029 (5)
C130.0188 (7)0.0112 (6)0.0147 (6)0.0001 (5)0.0045 (5)−0.0009 (5)
C140.0189 (7)0.0193 (7)0.0162 (7)0.0014 (5)0.0041 (5)0.0000 (5)
C150.0255 (8)0.0217 (7)0.0235 (8)−0.0008 (6)0.0126 (6)−0.0014 (6)
C160.0410 (10)0.0182 (7)0.0157 (7)−0.0039 (6)0.0089 (7)0.0003 (6)
C170.0353 (9)0.0184 (7)0.0168 (7)−0.0028 (6)−0.0040 (6)0.0025 (6)
C180.0200 (7)0.0161 (7)0.0222 (7)−0.0018 (5)0.0005 (6)0.0007 (6)
C190.0185 (7)0.0131 (6)0.0122 (6)−0.0005 (5)0.0039 (5)0.0022 (5)
C200.0155 (7)0.0136 (6)0.0130 (6)0.0003 (5)0.0023 (5)0.0006 (5)
C210.0217 (8)0.0189 (7)0.0195 (7)−0.0046 (6)0.0078 (6)−0.0020 (6)
C220.0274 (8)0.0230 (7)0.0200 (7)−0.0026 (6)0.0133 (6)−0.0022 (6)
C230.0290 (8)0.0168 (7)0.0156 (7)−0.0002 (6)0.0074 (6)−0.0027 (5)
C240.0194 (7)0.0143 (6)0.0142 (6)−0.0014 (5)0.0018 (5)0.0006 (5)
C250.0132 (6)0.0142 (6)0.0120 (6)0.0010 (5)0.0019 (5)0.0017 (5)
C260.0125 (6)0.0151 (6)0.0121 (6)0.0002 (5)0.0005 (5)0.0020 (5)
C270.0206 (7)0.0134 (6)0.0234 (8)0.0004 (5)0.0126 (6)0.0019 (5)
C280.0249 (9)0.0423 (10)0.0231 (8)−0.0018 (7)0.0113 (7)−0.0007 (7)
C290.0366 (10)0.0444 (11)0.0260 (9)−0.0012 (8)0.0181 (8)0.0011 (7)
C300.0437 (11)0.0218 (8)0.0447 (11)0.0067 (7)0.0340 (9)0.0064 (7)
C310.0211 (9)0.0427 (10)0.0480 (12)0.0074 (7)0.0194 (8)0.0164 (9)
C320.0207 (8)0.0401 (9)0.0310 (9)0.0039 (7)0.0118 (7)0.0107 (8)

Geometric parameters (Å, °)

Sn1—C12.130 (1)C14—H140.9500
Sn1—C72.129 (2)C15—C161.379 (2)
Sn1—C132.119 (1)C15—H150.9500
Sn1—O12.149 (1)C16—C171.391 (3)
Sn1—O3i2.392 (1)C16—H160.9500
O1—C191.2908 (17)C17—C181.391 (2)
O2—C191.2350 (18)C17—H170.9500
O3—C261.2574 (17)C18—H180.9500
O3—Sn1ii2.3917 (10)C19—C201.5186 (19)
N1—C261.3171 (18)C20—C211.399 (2)
N1—C271.4687 (18)C20—C251.4204 (19)
N1—H10.864 (9)C21—C221.388 (2)
C1—C61.395 (2)C21—H210.9500
C1—C21.393 (2)C22—C231.385 (2)
C2—C31.391 (2)C22—H220.9500
C2—H20.9500C23—C241.384 (2)
C3—C41.384 (2)C23—H230.9500
C3—H30.9500C24—C251.4004 (19)
C4—C51.385 (2)C24—H240.9500
C4—H40.9500C25—C261.5208 (19)
C5—C61.390 (2)C27—C321.519 (2)
C5—H50.9500C27—C281.517 (2)
C6—H60.9500C27—H271.0000
C7—C81.395 (2)C28—C291.533 (2)
C7—C121.397 (2)C28—H28A0.9900
C8—C91.391 (2)C28—H28B0.9900
C8—H80.9500C29—C301.515 (3)
C9—C101.385 (2)C29—H29A0.9900
C9—H90.9500C29—H29B0.9900
C10—C111.383 (2)C30—C311.511 (3)
C10—H100.9500C30—H30A0.9900
C11—C121.395 (2)C30—H30B0.9900
C11—H110.9500C31—C321.530 (2)
C12—H120.9500C31—H31A0.9900
C13—C141.394 (2)C31—H31B0.9900
C13—C181.395 (2)C32—H32B0.9900
C14—C151.392 (2)C32—H32C0.9900
C13—Sn1—C7121.55 (6)C16—C17—H17120.1
C13—Sn1—C1122.49 (5)C17—C18—C13120.82 (15)
C7—Sn1—C1113.32 (5)C17—C18—H18119.6
C13—Sn1—O199.06 (5)C13—C18—H18119.6
C7—Sn1—O189.59 (5)O2—C19—O1123.47 (13)
C1—Sn1—O197.16 (5)O2—C19—C20122.47 (13)
C13—Sn1—O3i81.11 (4)O1—C19—C20113.98 (12)
C7—Sn1—O3i85.30 (4)C21—C20—C25118.31 (13)
C1—Sn1—O3i87.67 (4)C21—C20—C19114.42 (12)
O1—Sn1—O3i174.06 (4)C25—C20—C19127.27 (12)
C19—O1—Sn1119.52 (9)C22—C21—C20122.14 (14)
C26—O3—Sn1ii141.59 (9)C22—C21—H21118.9
C26—N1—C27123.08 (12)C20—C21—H21118.9
C26—N1—H1116.4 (13)C21—C22—C23119.47 (14)
C27—N1—H1120.3 (13)C21—C22—H22120.3
C6—C1—C2118.35 (13)C23—C22—H22120.3
C6—C1—Sn1122.69 (11)C24—C23—C22119.46 (13)
C2—C1—Sn1118.80 (11)C24—C23—H23120.3
C3—C2—C1120.72 (14)C22—C23—H23120.3
C3—C2—H2119.6C23—C24—C25122.23 (13)
C1—C2—H2119.6C23—C24—H24118.9
C4—C3—C2120.30 (15)C25—C24—H24118.9
C4—C3—H3119.8C24—C25—C20118.33 (13)
C2—C3—H3119.8C24—C25—C26112.71 (12)
C3—C4—C5119.62 (15)C20—C25—C26128.68 (12)
C3—C4—H4120.2O3—C26—N1122.06 (13)
C5—C4—H4120.2O3—C26—C25117.27 (12)
C4—C5—C6120.08 (14)N1—C26—C25120.67 (12)
C4—C5—H5120.0N1—C27—C32110.68 (12)
C6—C5—H5120.0N1—C27—C28109.45 (13)
C1—C6—C5120.91 (14)C32—C27—C28110.90 (14)
C1—C6—H6119.5N1—C27—H27108.6
C5—C6—H6119.5C32—C27—H27108.6
C8—C7—C12118.07 (14)C28—C27—H27108.6
C8—C7—Sn1122.05 (11)C27—C28—C29110.67 (15)
C12—C7—Sn1119.72 (11)C27—C28—H28A109.5
C9—C8—C7120.98 (14)C29—C28—H28A109.5
C9—C8—H8119.5C27—C28—H28B109.5
C7—C8—H8119.5C29—C28—H28B109.5
C10—C9—C8120.32 (15)H28A—C28—H28B108.1
C10—C9—H9119.8C30—C29—C28110.89 (15)
C8—C9—H9119.8C30—C29—H29A109.5
C9—C10—C11119.54 (14)C28—C29—H29A109.5
C9—C10—H10120.2C30—C29—H29B109.5
C11—C10—H10120.2C28—C29—H29B109.5
C10—C11—C12120.25 (15)H29A—C29—H29B108.0
C10—C11—H11119.9C31—C30—C29111.49 (15)
C12—C11—H11119.9C31—C30—H30A109.3
C11—C12—C7120.82 (15)C29—C30—H30A109.3
C11—C12—H12119.6C31—C30—H30B109.3
C7—C12—H12119.6C29—C30—H30B109.3
C14—C13—C18118.56 (13)H30A—C30—H30B108.0
C14—C13—Sn1119.37 (10)C30—C31—C32111.89 (16)
C18—C13—Sn1121.55 (11)C30—C31—H31A109.2
C15—C14—C13120.64 (14)C32—C31—H31A109.2
C15—C14—H14119.7C30—C31—H31B109.2
C13—C14—H14119.7C32—C31—H31B109.2
C16—C15—C14120.24 (15)H31A—C31—H31B107.9
C16—C15—H15119.9C27—C32—C31110.81 (14)
C14—C15—H15119.9C27—C32—H32B109.5
C15—C16—C17119.93 (14)C31—C32—H32B109.5
C15—C16—H16120.0C27—C32—H32C109.5
C17—C16—H16120.0C31—C32—H32C109.5
C18—C17—C16119.78 (15)H32B—C32—H32C108.1
C18—C17—H17120.1
C13—Sn1—O1—C1964.82 (11)C18—C13—C14—C151.3 (2)
C7—Sn1—O1—C19−173.26 (10)Sn1—C13—C14—C15−170.53 (11)
C1—Sn1—O1—C19−59.80 (10)C13—C14—C15—C16−0.4 (2)
C13—Sn1—C1—C641.13 (14)C14—C15—C16—C17−1.4 (2)
C7—Sn1—C1—C6−120.66 (12)C15—C16—C17—C182.1 (2)
O1—Sn1—C1—C6146.69 (11)C16—C17—C18—C13−1.2 (2)
O3i—Sn1—C1—C6−36.79 (12)C14—C13—C18—C17−0.5 (2)
C13—Sn1—C1—C2−143.59 (12)Sn1—C13—C18—C17171.13 (11)
C7—Sn1—C1—C254.62 (13)Sn1—O1—C19—O22.02 (18)
O1—Sn1—C1—C2−38.03 (13)Sn1—O1—C19—C20178.78 (8)
O3i—Sn1—C1—C2138.49 (12)O2—C19—C20—C21146.62 (14)
C6—C1—C2—C31.0 (2)O1—C19—C20—C21−30.18 (18)
Sn1—C1—C2—C3−174.49 (14)O2—C19—C20—C25−32.3 (2)
C1—C2—C3—C40.3 (3)O1—C19—C20—C25150.90 (14)
C2—C3—C4—C5−1.0 (3)C25—C20—C21—C222.4 (2)
C3—C4—C5—C60.3 (3)C19—C20—C21—C22−176.59 (14)
C2—C1—C6—C5−1.7 (2)C20—C21—C22—C23−0.8 (2)
Sn1—C1—C6—C5173.61 (11)C21—C22—C23—C24−1.3 (2)
C4—C5—C6—C11.1 (2)C22—C23—C24—C251.7 (2)
C13—Sn1—C7—C8−38.88 (13)C23—C24—C25—C20−0.1 (2)
C1—Sn1—C7—C8123.10 (11)C23—C24—C25—C26−174.48 (13)
O1—Sn1—C7—C8−139.28 (11)C21—C20—C25—C24−2.0 (2)
O3i—Sn1—C7—C837.67 (11)C19—C20—C25—C24176.91 (13)
C13—Sn1—C7—C12145.85 (10)C21—C20—C25—C26171.43 (14)
C1—Sn1—C7—C12−52.17 (12)C19—C20—C25—C26−9.7 (2)
O1—Sn1—C7—C1245.45 (11)Sn1ii—O3—C26—N1−85.49 (19)
O3i—Sn1—C7—C12−137.60 (11)Sn1ii—O3—C26—C2595.48 (16)
C12—C7—C8—C9−1.1 (2)C27—N1—C26—O36.3 (2)
Sn1—C7—C8—C9−176.43 (11)C27—N1—C26—C25−174.74 (13)
C7—C8—C9—C100.9 (2)C24—C25—C26—O320.40 (18)
C8—C9—C10—C110.3 (2)C20—C25—C26—O3−153.31 (14)
C9—C10—C11—C12−1.4 (2)C24—C25—C26—N1−158.65 (13)
C10—C11—C12—C71.2 (2)C20—C25—C26—N127.6 (2)
C8—C7—C12—C110.0 (2)C26—N1—C27—C32−121.11 (16)
Sn1—C7—C12—C11175.48 (11)C26—N1—C27—C28116.37 (16)
C7—Sn1—C13—C14179.98 (10)N1—C27—C28—C29179.65 (14)
C1—Sn1—C13—C1419.66 (13)C32—C27—C28—C2957.26 (19)
O1—Sn1—C13—C14−84.89 (11)C27—C28—C29—C30−56.6 (2)
O3i—Sn1—C13—C14101.13 (11)C28—C29—C30—C3155.2 (2)
C7—Sn1—C13—C188.41 (14)C29—C30—C31—C32−54.5 (2)
C1—Sn1—C13—C18−151.91 (11)N1—C27—C32—C31−177.73 (15)
O1—Sn1—C13—C18103.54 (11)C28—C27—C32—C31−56.1 (2)
O3i—Sn1—C13—C18−70.44 (11)C30—C31—C32—C2754.7 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)1.85 (1)2.666 (2)158 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2796).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolzhenko, A. V., Syropyatov, B. Ya., Koz’minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J.37, 407–408.
  • Ng, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem.345, 59–64.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  • Tiekink, E. R. T. (1994). Trends Organomet. Chem.1, 71–116.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography