PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1977.
Published online 2010 July 10. doi:  10.1107/S1600536810026206
PMCID: PMC3007349

N-(4-Chloro­phen­yl)-2-(8-quinol­yloxy)acetamide monohydrate

Abstract

In the title compound, C17H13ClN2O2·H2O, the dihedral angle between the quinoline ring system and the benzene ring is 13.0 (1)°. An intra­molecular N—H(...)O hydrogen bond may influence the mol­ecular conformation. In the crystal structure, acetamide mol­ecules are linked to water mol­ecules via inter­molecular O—H(...) N and N—H(...)O hydrogen bonds and in turn linked into chains along [010] via O—H(...)O hydrogen bonds.

Related literature

For the synthesis of the title compound and its lanthanide complexes, see: Wu et al. (2008 [triangle]). For related structures, see: Zhang et al. (2006 [triangle]); Wu et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1977-scheme1.jpg

Experimental

Crystal data

  • C17H13ClN2O2·H2O
  • M r = 330.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1977-efi1.jpg
  • a = 19.4984 (19) Å
  • b = 5.2601 (6) Å
  • c = 29.851 (3) Å
  • V = 3061.7 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 296 K
  • 0.32 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.929, T max = 0.948
  • 15222 measured reflections
  • 3622 independent reflections
  • 1800 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.00
  • 3622 reflections
  • 217 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026206/lh5076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026206/lh5076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Doctoral Foundation of Henan Polytechnic University (B2009–70 648359).

supplementary crystallographic information

Comment

Amide type ligands have been extensively investigated due to their excellent coordination abilities (Wu et al., 2008;2010). As part of our ongoing studies of amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.

In the title compound, all the bond lengths are comparable with those observed in a similar compound (Zhang et al., 2006). The dihedral angle between quinoline ring (N2/C9–C17, r.m.s. deviation 0.0129 Å) and benzene ring (C1–C6, r.m.s. deviation 0.0008 Å) is 13.0 (1)°. An intramolecular N-H···O hydrogen bond may influence the molecular conformation. In the crystal structure, N-(4-chlorophenyl)-2- (quinolin-8-yloxy)acetamide molecules are linked to water molecules via intermolecular O—H··· N and N—H···O hydrogen bonds and in turn linked into one-dimensional chains along [010] via O-H···O hydrogen bonds. Additional stabilization is provided by weak π···π stacking interactions involving the benzene ring and pyridine rings of symmetry related quinoline groups with a centroid to centroid distance of 3.8607 (14) Å.

Experimental

The title compound was prepared according to the literature, Wu et al. (2008). Colorless block crystals were obtained by slow evaporation of a N,N-dimethylformamide solution of the title compound.

Refinement

The N—H and water H-atoms were located in a difference Fourier map and refined with an N—H distance restraint of 0.83 (1)Å and an O—H distance restraint of 0.85 (1)Å. H atoms attached to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.93; Uiso(H)=1.2Ueq(C)).

Figures

Fig. 1.
The molecular structure shown with 50% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure viewed approximately along the b axis with hydrogen bonds shown as dashed lines.

Crystal data

C17H13ClN2O2·H2OF(000) = 1376
Mr = 330.76Dx = 1.435 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1957 reflections
a = 19.4984 (19) Åθ = 2.5–19.9°
b = 5.2601 (6) ŵ = 0.27 mm1
c = 29.851 (3) ÅT = 296 K
V = 3061.7 (5) Å3Block, colorless
Z = 80.32 × 0.23 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer3622 independent reflections
Radiation source: sealed tube1800 reflections with I > 2σ(I)
graphiteRint = 0.050
[var phi] and ω scansθmax = 28.1°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→25
Tmin = 0.929, Tmax = 0.948k = −6→4
15222 measured reflectionsl = −39→39

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0231P] where P = (Fo2 + 2Fc2)/3
3622 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.16 e Å3
4 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.32260 (4)0.36909 (15)0.044180 (19)0.0858 (3)
O20.40858 (7)0.1726 (3)0.32297 (4)0.0532 (4)
N20.34502 (9)0.5390 (3)0.36817 (6)0.0505 (5)
N10.38877 (10)0.1567 (3)0.23341 (6)0.0524 (5)
C100.47572 (12)0.0589 (4)0.38814 (7)0.0568 (6)
H100.4991−0.06750.37260.068*
C170.39211 (11)0.3959 (4)0.39023 (6)0.0454 (5)
C130.40699 (12)0.4337 (4)0.43606 (7)0.0522 (6)
C70.42016 (11)−0.0454 (4)0.25142 (7)0.0506 (6)
C90.42715 (11)0.2012 (4)0.36669 (6)0.0470 (5)
C110.49027 (12)0.1029 (5)0.43328 (8)0.0647 (7)
H110.52380.00600.44740.078*
C120.45676 (13)0.2827 (4)0.45688 (7)0.0618 (7)
H120.46670.30650.48710.074*
C140.37041 (14)0.6238 (5)0.45851 (7)0.0650 (7)
H140.37820.65220.48880.078*
O10.43645 (9)−0.2349 (3)0.23095 (5)0.0771 (5)
C10.34138 (12)0.3011 (5)0.09954 (7)0.0564 (6)
C80.43823 (12)−0.0380 (4)0.30005 (7)0.0529 (6)
H8A0.4228−0.19420.31410.063*
H8B0.4877−0.02980.30300.063*
C40.37288 (11)0.1944 (4)0.18780 (7)0.0480 (5)
C30.33244 (12)0.3998 (4)0.17682 (7)0.0569 (6)
H30.31550.50390.19950.068*
C20.31662 (12)0.4537 (5)0.13280 (7)0.0612 (6)
H20.28930.59300.12580.073*
C160.31355 (12)0.7171 (5)0.39060 (7)0.0619 (6)
H160.28220.81810.37530.074*
C60.38144 (13)0.0964 (5)0.10979 (7)0.0649 (7)
H60.3982−0.00700.08700.078*
C50.39718 (13)0.0424 (4)0.15377 (7)0.0629 (7)
H50.4244−0.09770.16050.075*
C150.32395 (14)0.7662 (5)0.43632 (8)0.0681 (7)
H150.29950.89340.45090.082*
O1W0.28141 (9)0.4811 (3)0.28357 (5)0.0696 (5)
H1A0.3792 (14)0.272 (4)0.2514 (7)0.104*
H1WA0.2599 (13)0.621 (3)0.2800 (7)0.104*
H1WB0.3043 (12)0.488 (5)0.3078 (6)0.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0970 (6)0.1067 (6)0.0538 (4)−0.0048 (5)−0.0072 (3)0.0087 (4)
O20.0583 (10)0.0571 (10)0.0443 (8)0.0109 (8)−0.0004 (7)−0.0023 (7)
N20.0479 (11)0.0527 (11)0.0509 (10)0.0024 (10)0.0006 (9)−0.0023 (9)
N10.0637 (13)0.0479 (12)0.0455 (11)0.0084 (10)0.0035 (9)−0.0050 (9)
C100.0559 (15)0.0596 (15)0.0548 (13)0.0078 (13)0.0008 (11)0.0075 (11)
C170.0428 (13)0.0474 (13)0.0460 (12)−0.0093 (11)0.0013 (10)0.0031 (10)
C130.0564 (16)0.0522 (14)0.0479 (13)−0.0131 (12)0.0007 (11)0.0020 (11)
C70.0553 (15)0.0433 (13)0.0533 (13)−0.0019 (12)0.0051 (11)−0.0029 (11)
C90.0467 (13)0.0514 (14)0.0431 (11)−0.0045 (11)0.0017 (10)0.0048 (10)
C110.0607 (17)0.0717 (17)0.0618 (15)0.0002 (14)−0.0119 (13)0.0128 (13)
C120.0712 (18)0.0652 (17)0.0490 (13)−0.0091 (14)−0.0092 (13)0.0060 (12)
C140.080 (2)0.0656 (17)0.0492 (14)−0.0122 (15)0.0029 (13)−0.0056 (12)
O10.1077 (15)0.0544 (11)0.0691 (10)0.0222 (10)−0.0111 (10)−0.0142 (9)
C10.0581 (16)0.0621 (16)0.0490 (13)−0.0105 (13)0.0011 (11)0.0007 (12)
C80.0611 (16)0.0450 (13)0.0525 (13)0.0043 (12)0.0072 (11)0.0048 (11)
C40.0503 (15)0.0452 (12)0.0485 (12)−0.0055 (11)0.0031 (11)−0.0035 (10)
C30.0629 (16)0.0520 (14)0.0558 (14)0.0068 (13)−0.0027 (12)−0.0110 (11)
C20.0615 (15)0.0600 (15)0.0621 (15)0.0043 (13)−0.0094 (13)−0.0010 (12)
C160.0584 (16)0.0599 (15)0.0673 (15)0.0036 (13)−0.0009 (13)−0.0050 (13)
C60.0829 (19)0.0631 (16)0.0486 (14)0.0028 (15)0.0136 (13)−0.0053 (12)
C50.0821 (18)0.0527 (14)0.0539 (14)0.0125 (13)0.0141 (13)−0.0024 (11)
C150.0737 (19)0.0673 (17)0.0634 (16)−0.0007 (15)0.0090 (14)−0.0175 (14)
O1W0.0808 (14)0.0720 (13)0.0560 (10)0.0091 (10)−0.0059 (9)−0.0056 (9)

Geometric parameters (Å, °)

Cl1—C11.730 (2)C14—C151.349 (3)
O2—C91.363 (2)C14—H140.9300
O2—C81.425 (2)C1—C61.365 (3)
N2—C161.305 (3)C1—C21.365 (3)
N2—C171.358 (2)C8—H8A0.9700
N1—C71.339 (3)C8—H8B0.9700
N1—C41.411 (3)C4—C51.377 (3)
N1—H1A0.832 (10)C4—C31.377 (3)
C10—C91.366 (3)C3—C21.379 (3)
C10—C111.396 (3)C3—H30.9300
C10—H100.9300C2—H20.9300
C17—C131.412 (3)C16—C151.404 (3)
C17—C91.417 (3)C16—H160.9300
C13—C121.400 (3)C6—C51.378 (3)
C13—C141.399 (3)C6—H60.9300
C7—O11.212 (2)C5—H50.9300
C7—C81.494 (3)C15—H150.9300
C11—C121.348 (3)O1W—H1WA0.854 (9)
C11—H110.9300O1W—H1WB0.851 (9)
C12—H120.9300
C9—O2—C8115.98 (16)C6—C1—Cl1119.91 (18)
C16—N2—C17117.87 (19)C2—C1—Cl1119.9 (2)
C7—N1—C4126.84 (18)O2—C8—C7113.02 (17)
C7—N1—H1A115.0 (19)O2—C8—H8A109.0
C4—N1—H1A118.2 (19)C7—C8—H8A109.0
C9—C10—C11120.1 (2)O2—C8—H8B109.0
C9—C10—H10119.9C7—C8—H8B109.0
C11—C10—H10119.9H8A—C8—H8B107.8
N2—C17—C13122.04 (19)C5—C4—C3118.5 (2)
N2—C17—C9119.08 (18)C5—C4—N1123.7 (2)
C13—C17—C9118.88 (19)C3—C4—N1117.76 (19)
C12—C13—C14123.1 (2)C4—C3—C2121.1 (2)
C12—C13—C17119.5 (2)C4—C3—H3119.5
C14—C13—C17117.4 (2)C2—C3—H3119.5
O1—C7—N1124.8 (2)C1—C2—C3119.6 (2)
O1—C7—C8116.7 (2)C1—C2—H2120.2
N1—C7—C8118.50 (19)C3—C2—H2120.2
O2—C9—C10124.9 (2)N2—C16—C15124.3 (2)
O2—C9—C17115.25 (18)N2—C16—H16117.9
C10—C9—C17119.84 (19)C15—C16—H16117.9
C12—C11—C10121.5 (2)C1—C6—C5120.3 (2)
C12—C11—H11119.3C1—C6—H6119.9
C10—C11—H11119.3C5—C6—H6119.9
C11—C12—C13120.1 (2)C4—C5—C6120.4 (2)
C11—C12—H12119.9C4—C5—H5119.8
C13—C12—H12119.9C6—C5—H5119.8
C15—C14—C13120.3 (2)C14—C15—C16118.2 (2)
C15—C14—H14119.9C14—C15—H15120.9
C13—C14—H14119.9C16—C15—H15120.9
C6—C1—C2120.2 (2)H1WA—O1W—H1WB109.2 (15)
C16—N2—C17—C130.5 (3)C12—C13—C14—C15178.8 (2)
C16—N2—C17—C9−179.92 (19)C17—C13—C14—C15−1.2 (3)
N2—C17—C13—C12−179.1 (2)C9—O2—C8—C7−175.30 (17)
C9—C17—C13—C121.3 (3)O1—C7—C8—O2−171.25 (19)
N2—C17—C13—C140.9 (3)N1—C7—C8—O210.0 (3)
C9—C17—C13—C14−178.67 (19)C7—N1—C4—C5−10.4 (4)
C4—N1—C7—O1−4.3 (4)C7—N1—C4—C3171.6 (2)
C4—N1—C7—C8174.31 (19)C5—C4—C3—C2−0.2 (3)
C8—O2—C9—C106.1 (3)N1—C4—C3—C2177.9 (2)
C8—O2—C9—C17−174.00 (17)C6—C1—C2—C30.1 (3)
C11—C10—C9—O2−179.4 (2)Cl1—C1—C2—C3−179.29 (18)
C11—C10—C9—C170.8 (3)C4—C3—C2—C10.0 (3)
N2—C17—C9—O2−1.3 (3)C17—N2—C16—C15−1.7 (3)
C13—C17—C9—O2178.33 (18)C2—C1—C6—C50.0 (4)
N2—C17—C9—C10178.64 (19)Cl1—C1—C6—C5179.38 (19)
C13—C17—C9—C10−1.8 (3)C3—C4—C5—C60.3 (3)
C9—C10—C11—C120.7 (4)N1—C4—C5—C6−177.6 (2)
C10—C11—C12—C13−1.2 (4)C1—C6—C5—C4−0.2 (4)
C14—C13—C12—C11−179.9 (2)C13—C14—C15—C160.2 (4)
C17—C13—C12—C110.1 (3)N2—C16—C15—C141.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1Wi0.85 (1)2.06 (1)2.9014 (16)168 (2)
N1—H1A···O20.83 (1)2.27 (2)2.702 (2)113 (2)
N1—H1A···O1W0.83 (1)2.40 (2)3.088 (2)140 (2)
O1W—H1WB···N20.85 (1)1.99 (1)2.830 (2)170 (2)

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5076).

References

  • Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem.61, 2207–2215.
  • Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [PMC free article] [PubMed]
  • Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography