PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2035.
Published online 2010 July 17. doi:  10.1107/S1600536810027297
PMCID: PMC3007347

tert-Butyl 3-(8-bromo-4H,10H-1,2-oxazolo[4,3-c][1]benzoxepin-10-yl)-2-methyl-1H-indole-1-carboxyl­ate

Abstract

In the title compound, C25H23BrN2O4, the seven-membered ring adopts a twisted-boat conformation. The indole ring system is planar within 0.021 (2) Å and the ester group [–C(=O)—O—C–] is almost coplanar with it [dihedral angle = 3.0 (2)°]. The conformation of the ester group is influenced by intra­molecular C—H(...)O inter­actions. In the crystal structure, mol­ecules are linked into chains along the b axis by C—H(...)N hydrogen bonds.

Related literature

For general background to and biological applications of nitro­gen- and oxygen-containing heterocyclic compounds, see: Furstner (2003 [triangle]); Liddell (2002 [triangle]); Caramella & Grunanger (1984 [triangle]); Stormer et al. (2004 [triangle]); Erdelyi et al. (2008 [triangle]). Hou et al. (2003 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2035-scheme1.jpg

Experimental

Crystal data

  • C25H23BrN2O4
  • M r = 495.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2035-efi1.jpg
  • a = 16.0494 (6) Å
  • b = 9.6497 (4) Å
  • c = 16.2202 (7) Å
  • β = 116.267 (2)°
  • V = 2252.66 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.86 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.982, T max = 0.982
  • 20668 measured reflections
  • 5584 independent reflections
  • 2780 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.134
  • S = 1.00
  • 5584 reflections
  • 289 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027297/ci5101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027297/ci5101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Nitrogen and oxygen containing heterocycles are ubiquitous substructures in myriad of biologically active natural products and small-molecule pharmaceuticals (Furstner, 2003; Liddell, 2002). The nitrile oxide cycloaddition is a useful method to prepare heterocyclic compounds (Caramella & Grunanger, 1984). Isoxazole, the cycloadduct of nitrile oxide, is regarded as a versatile synthetic precursor for γ-amino alcohols and β-hydroxy ketones. Isoxazoles are found in some natural products, such as ibotenic acid. Ibotenic acid is naturally occurring in mushrooms Amanita muscaria and Amanita pantherina. Ibotenic acid is a powerful neurotoxin that is used as a brain-lesioning agent and has shown to be highly neurotoxic when injected directly into the brains of mice and rats. Isoxazoles also form the basis for a number of drugs, including the COX-2 inhibitor valdecoxib. Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, painful menstruation and menstrual symptoms (Stormer et al., 2004; Erdelyi et al., 2008).

In the title (Fig. 1), the indole ring system is planar within ±0.021 (2) Å. The oxepane ring adopts a twisted boat conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.654 (3) Å, [var phi]2 = 179.9 (3)°, q3 = 0.380 (3) Å, [var phi]3 = 222.4 (3)° and Δs(C7) = 34.3 (3)°. The position of atom O2 which lies between bromobenzene and isooxazone rings is defined by torsion angles O2—C8—C7—C5 of -34.0 (4)° and O2—C9—C10—C11 of 176.4 (3)°.

The ester group [-C(═O)-O-C-] is coplanar with the indole ring system [dihedral angle 3.0 (2)°]. The planarity is facilitated by intramolecular C14—H14A···O3 C24—H24B···O3 hydrogen bonds (Table 1). A free rotation about the O4—C22 single bond [1.492 (3) Å] is restricted by the C24—H24B···O3 hydrogen bond. The angles around atom C4 [C12—C4—C3 = 113.6 (2)° and C5—C4—C3 = 115.6 (2)°] deviates significantly from ideal tetrahedral values which may be as a result of steric interactions between isooxazole, bromophenol and indole groups.

Atom C11 in the molecule at (x,y,z) acts as donar to atom N1 at (x, 1+y, z), forming a chain running along the b axis (Fig. 2).

Experimental

[3-(5-Bromo-2-prop-2-ynyloxy-phenyl)-2-nitro-ethyl]-2-methyl-1H-indole] (1.0 mmol) and N,N-dimethyl-4-aminopyridine (0.2 mmol) were dissolved in toluene (5 ml). Di-tert-butyl dicarbonate (2.5 mmol) in toluene (5 ml) was added in portions over a period of 0.5 h at 363 K to the nitroalkane solution and the reaction was allowed to proceed for a further 2 h. The mixture was evaporated and the product was purified by column chromatography using ethyl acetate-petroleum ether (2:8) as eluent. Single crystals appeared from the same eluent mixture.

Refinement

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
Fig. 2.
The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C25H23BrN2O4F(000) = 1016
Mr = 495.36Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1964 reflections
a = 16.0494 (6) Åθ = 1.4–28.4°
b = 9.6497 (4) ŵ = 1.86 mm1
c = 16.2202 (7) ÅT = 293 K
β = 116.267 (2)°Block, colourless
V = 2252.66 (16) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer5584 independent reflections
Radiation source: fine-focus sealed tube2780 reflections with I > 2σ(I)
graphiteRint = 0.049
ω and [var phi] scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −21→21
Tmin = 0.982, Tmax = 0.982k = −12→12
20668 measured reflectionsl = −21→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0504P)2 + 1.2404P] where P = (Fo2 + 2Fc2)/3
5584 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.21016 (4)0.94661 (4)0.20807 (3)0.0911 (2)
O10.48628 (16)0.2154 (2)0.14770 (17)0.0662 (7)
O20.43563 (16)0.6581 (2)0.04692 (15)0.0590 (6)
O3−0.01565 (17)0.2636 (3)0.02194 (17)0.0791 (8)
O40.02421 (14)0.2088 (2)0.16886 (14)0.0513 (5)
N10.40074 (18)0.2682 (3)0.1374 (2)0.0543 (7)
N20.12827 (16)0.3153 (2)0.13481 (16)0.0389 (6)
C10.2807 (2)0.8543 (3)0.1577 (2)0.0550 (8)
C20.2779 (2)0.7113 (3)0.1518 (2)0.0476 (8)
H20.24060.66200.17190.057*
C30.3299 (2)0.6404 (3)0.1163 (2)0.0424 (7)
C40.3153 (2)0.4858 (3)0.0952 (2)0.0429 (7)
H40.28280.47930.02800.051*
C50.4033 (2)0.4004 (3)0.1233 (2)0.0425 (7)
C60.5349 (2)0.3220 (4)0.1381 (2)0.0584 (9)
H60.59400.31390.14110.070*
C70.4885 (2)0.4401 (3)0.1237 (2)0.0462 (8)
C80.5156 (2)0.5831 (4)0.1103 (3)0.0598 (9)
H8A0.54320.63120.16890.072*
H8B0.56150.57840.08680.072*
C90.3850 (2)0.7190 (3)0.0876 (2)0.0468 (7)
C100.3868 (2)0.8620 (4)0.0935 (2)0.0605 (9)
H100.42410.91220.07360.073*
C110.3343 (3)0.9314 (3)0.1283 (3)0.0635 (10)
H110.33511.02760.13180.076*
C140.1088 (2)0.3832 (4)−0.0252 (2)0.0559 (9)
H14A0.04880.3422−0.04300.084*
H14B0.14070.3343−0.05430.084*
H14C0.10140.4786−0.04390.084*
C120.2510 (2)0.4182 (3)0.1294 (2)0.0404 (7)
C130.1637 (2)0.3746 (3)0.0763 (2)0.0404 (7)
C150.19718 (19)0.3240 (3)0.2260 (2)0.0376 (7)
C160.1986 (2)0.2815 (3)0.3088 (2)0.0451 (7)
H160.14810.23600.31030.054*
C170.2775 (2)0.3094 (4)0.3884 (2)0.0537 (8)
H170.28010.28200.44440.064*
C180.3536 (2)0.3776 (4)0.3872 (2)0.0534 (8)
H180.40570.39610.44220.064*
C190.3518 (2)0.4174 (3)0.3050 (2)0.0507 (8)
H190.40270.46230.30420.061*
C200.27401 (19)0.3904 (3)0.2236 (2)0.0393 (7)
C210.0393 (2)0.2605 (3)0.1012 (2)0.0476 (8)
C22−0.0658 (2)0.1391 (4)0.1484 (2)0.0542 (9)
C23−0.0521 (3)0.0973 (5)0.2429 (3)0.0806 (13)
H23A−0.00230.03140.26820.121*
H23B−0.10820.05620.23890.121*
H23C−0.03710.17770.28170.121*
C24−0.0771 (3)0.0154 (4)0.0874 (3)0.0829 (12)
H24A−0.0255−0.04640.11730.124*
H24B−0.07930.04590.03020.124*
H24C−0.1338−0.03200.07590.124*
C25−0.1444 (2)0.2408 (5)0.1069 (3)0.0769 (12)
H25A−0.15270.26620.04660.115*
H25B−0.13040.32200.14490.115*
H25C−0.20050.19910.10280.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1213 (4)0.0499 (3)0.1235 (4)0.0187 (2)0.0738 (3)−0.0069 (2)
O10.0673 (15)0.0465 (15)0.0968 (19)0.0139 (12)0.0474 (14)0.0101 (13)
O20.0687 (15)0.0561 (15)0.0683 (15)−0.0004 (12)0.0448 (13)0.0146 (12)
O30.0632 (16)0.114 (2)0.0528 (16)−0.0311 (15)0.0189 (13)0.0067 (15)
O40.0489 (12)0.0553 (14)0.0505 (12)−0.0162 (11)0.0227 (10)0.0038 (10)
N10.0567 (16)0.0364 (16)0.082 (2)0.0024 (13)0.0422 (15)0.0006 (14)
N20.0426 (13)0.0335 (14)0.0452 (14)−0.0037 (11)0.0237 (12)0.0003 (11)
C10.062 (2)0.0330 (19)0.066 (2)0.0045 (16)0.0249 (18)0.0017 (16)
C20.0547 (18)0.0345 (18)0.0562 (19)−0.0033 (15)0.0268 (16)0.0012 (14)
C30.0484 (17)0.0322 (17)0.0484 (18)−0.0027 (14)0.0231 (15)0.0042 (13)
C40.0460 (17)0.0392 (18)0.0475 (17)−0.0070 (14)0.0244 (15)−0.0019 (14)
C50.0497 (18)0.0348 (17)0.0489 (18)−0.0037 (14)0.0272 (15)−0.0040 (14)
C60.0510 (19)0.060 (2)0.071 (2)0.0018 (18)0.0331 (18)0.0040 (18)
C70.0451 (17)0.050 (2)0.0492 (18)−0.0044 (16)0.0255 (15)0.0002 (15)
C80.052 (2)0.056 (2)0.083 (2)−0.0058 (17)0.0392 (19)0.0059 (19)
C90.0470 (17)0.0425 (19)0.0505 (18)−0.0052 (15)0.0212 (15)0.0082 (15)
C100.062 (2)0.043 (2)0.077 (2)−0.0082 (18)0.0308 (19)0.0171 (18)
C110.067 (2)0.0293 (19)0.084 (3)−0.0055 (18)0.024 (2)0.0081 (17)
C140.063 (2)0.059 (2)0.051 (2)−0.0106 (18)0.0301 (17)0.0022 (17)
C120.0488 (18)0.0288 (16)0.0482 (18)0.0001 (13)0.0257 (15)0.0000 (13)
C130.0494 (17)0.0288 (16)0.0494 (18)−0.0029 (14)0.0279 (15)0.0000 (13)
C150.0414 (16)0.0247 (15)0.0534 (19)0.0016 (13)0.0271 (15)0.0002 (13)
C160.0476 (18)0.0396 (18)0.0522 (19)0.0040 (14)0.0259 (16)0.0007 (15)
C170.061 (2)0.053 (2)0.052 (2)0.0126 (18)0.0289 (18)0.0041 (16)
C180.0466 (18)0.053 (2)0.0486 (19)0.0052 (16)0.0106 (15)−0.0094 (16)
C190.0513 (19)0.048 (2)0.052 (2)0.0023 (16)0.0223 (17)−0.0009 (15)
C200.0404 (16)0.0293 (15)0.0478 (18)0.0009 (13)0.0191 (14)−0.0047 (13)
C210.0484 (19)0.045 (2)0.049 (2)−0.0041 (15)0.0211 (17)−0.0001 (15)
C220.0475 (19)0.054 (2)0.060 (2)−0.0169 (17)0.0229 (16)0.0019 (17)
C230.072 (2)0.095 (3)0.072 (2)−0.031 (2)0.030 (2)0.018 (2)
C240.090 (3)0.061 (3)0.105 (3)−0.032 (2)0.050 (3)−0.020 (2)
C250.053 (2)0.090 (3)0.087 (3)−0.004 (2)0.031 (2)0.005 (2)

Geometric parameters (Å, °)

Br1—C11.887 (3)C11—H110.93
O1—C61.342 (4)C14—C131.487 (4)
O1—N11.403 (3)C14—H14A0.96
O2—C91.384 (4)C14—H14B0.96
O2—C81.436 (4)C14—H14C0.96
O3—C211.195 (4)C12—C131.347 (4)
O4—C211.321 (4)C12—C201.429 (4)
O4—C221.492 (3)C15—C161.396 (4)
N1—C51.300 (4)C15—C201.405 (4)
N2—C211.388 (4)C16—C171.376 (4)
N2—C151.403 (4)C16—H160.93
N2—C131.425 (3)C17—C181.396 (5)
C1—C111.372 (5)C17—H170.93
C1—C21.382 (4)C18—C191.376 (4)
C2—C31.386 (4)C18—H180.93
C2—H20.93C19—C201.383 (4)
C3—C91.392 (4)C19—H190.93
C3—C41.525 (4)C22—C251.502 (5)
C4—C121.518 (4)C22—C231.503 (5)
C4—C51.520 (4)C22—C241.509 (5)
C4—H40.98C23—H23A0.96
C5—C71.417 (4)C23—H23B0.96
C6—C71.325 (5)C23—H23C0.96
C6—H60.93C24—H24A0.96
C7—C81.491 (4)C24—H24B0.96
C8—H8A0.97C24—H24C0.96
C8—H8B0.97C25—H25A0.96
C9—C101.383 (5)C25—H25B0.96
C10—C111.378 (5)C25—H25C0.96
C10—H100.93
C6—O1—N1107.3 (2)C13—C12—C20109.2 (2)
C9—O2—C8113.6 (2)C13—C12—C4125.7 (3)
C21—O4—C22120.0 (2)C20—C12—C4125.1 (3)
C5—N1—O1105.8 (2)C12—C13—N2108.0 (2)
C21—N2—C15129.1 (2)C12—C13—C14129.0 (3)
C21—N2—C13122.4 (2)N2—C13—C14123.0 (3)
C15—N2—C13108.5 (2)C16—C15—N2131.8 (3)
C11—C1—C2121.5 (3)C16—C15—C20121.4 (3)
C11—C1—Br1118.9 (3)N2—C15—C20106.9 (2)
C2—C1—Br1119.6 (3)C17—C16—C15117.4 (3)
C1—C2—C3121.0 (3)C17—C16—H16121.3
C1—C2—H2119.5C15—C16—H16121.3
C3—C2—H2119.5C16—C17—C18121.9 (3)
C2—C3—C9117.2 (3)C16—C17—H17119.1
C2—C3—C4121.0 (3)C18—C17—H17119.1
C9—C3—C4121.0 (3)C19—C18—C17120.1 (3)
C12—C4—C5110.4 (2)C19—C18—H18119.9
C12—C4—C3113.6 (2)C17—C18—H18119.9
C5—C4—C3115.6 (2)C18—C19—C20119.7 (3)
C12—C4—H4105.4C18—C19—H19120.1
C5—C4—H4105.4C20—C19—H19120.1
C3—C4—H4105.4C19—C20—C15119.5 (3)
N1—C5—C7111.7 (3)C19—C20—C12133.0 (3)
N1—C5—C4119.2 (3)C15—C20—C12107.5 (2)
C7—C5—C4128.4 (3)O3—C21—O4125.7 (3)
C7—C6—O1111.7 (3)O3—C21—N2123.6 (3)
C7—C6—H6124.2O4—C21—N2110.6 (3)
O1—C6—H6124.2O4—C22—C25110.1 (3)
C6—C7—C5103.6 (3)O4—C22—C23101.8 (3)
C6—C7—C8130.1 (3)C25—C22—C23110.3 (3)
C5—C7—C8126.3 (3)O4—C22—C24109.1 (3)
O2—C8—C7110.2 (3)C25—C22—C24112.9 (3)
O2—C8—H8A109.6C23—C22—C24112.1 (3)
C7—C8—H8A109.6C22—C23—H23A109.5
O2—C8—H8B109.6C22—C23—H23B109.5
C7—C8—H8B109.6H23A—C23—H23B109.5
H8A—C8—H8B108.1C22—C23—H23C109.5
C10—C9—O2117.2 (3)H23A—C23—H23C109.5
C10—C9—C3121.2 (3)H23B—C23—H23C109.5
O2—C9—C3121.5 (3)C22—C24—H24A109.5
C11—C10—C9121.0 (3)C22—C24—H24B109.5
C11—C10—H10119.5H24A—C24—H24B109.5
C9—C10—H10119.5C22—C24—H24C109.5
C1—C11—C10118.1 (3)H24A—C24—H24C109.5
C1—C11—H11121.0H24B—C24—H24C109.5
C10—C11—H11121.0C22—C25—H25A109.5
C13—C14—H14A109.5C22—C25—H25B109.5
C13—C14—H14B109.5H25A—C25—H25B109.5
H14A—C14—H14B109.5C22—C25—H25C109.5
C13—C14—H14C109.5H25A—C25—H25C109.5
H14A—C14—H14C109.5H25B—C25—H25C109.5
H14B—C14—H14C109.5
C6—O1—N1—C5−0.5 (3)C5—C4—C12—C2059.5 (4)
C11—C1—C2—C30.4 (5)C3—C4—C12—C20−72.3 (4)
Br1—C1—C2—C3−179.1 (2)C20—C12—C13—N2−0.9 (3)
C1—C2—C3—C90.4 (5)C4—C12—C13—N2179.0 (3)
C1—C2—C3—C4−169.9 (3)C20—C12—C13—C14178.9 (3)
C2—C3—C4—C12−8.4 (4)C4—C12—C13—C14−1.3 (5)
C9—C3—C4—C12−178.3 (3)C21—N2—C13—C12179.9 (3)
C2—C3—C4—C5−137.6 (3)C15—N2—C13—C120.0 (3)
C9—C3—C4—C552.5 (4)C21—N2—C13—C140.1 (4)
O1—N1—C5—C70.0 (3)C15—N2—C13—C14−179.8 (3)
O1—N1—C5—C4171.0 (2)C21—N2—C15—C160.4 (5)
C12—C4—C5—N126.0 (4)C13—N2—C15—C16−179.7 (3)
C3—C4—C5—N1156.7 (3)C21—N2—C15—C20−179.0 (3)
C12—C4—C5—C7−164.6 (3)C13—N2—C15—C200.9 (3)
C3—C4—C5—C7−33.9 (4)N2—C15—C16—C17−178.1 (3)
N1—O1—C6—C71.0 (4)C20—C15—C16—C171.2 (4)
O1—C6—C7—C5−0.9 (4)C15—C16—C17—C180.0 (5)
O1—C6—C7—C8179.3 (3)C16—C17—C18—C19−0.9 (5)
N1—C5—C7—C60.6 (4)C17—C18—C19—C200.4 (5)
C4—C5—C7—C6−169.4 (3)C18—C19—C20—C150.8 (4)
N1—C5—C7—C8−179.7 (3)C18—C19—C20—C12179.8 (3)
C4—C5—C7—C810.3 (5)C16—C15—C20—C19−1.7 (4)
C9—O2—C8—C784.3 (3)N2—C15—C20—C19177.8 (3)
C6—C7—C8—O2145.6 (3)C16—C15—C20—C12179.1 (3)
C5—C7—C8—O2−34.0 (4)N2—C15—C20—C12−1.4 (3)
C8—O2—C9—C10110.5 (3)C13—C12—C20—C19−177.6 (3)
C8—O2—C9—C3−73.3 (4)C4—C12—C20—C192.6 (5)
C2—C3—C9—C10−0.7 (5)C13—C12—C20—C151.4 (3)
C4—C3—C9—C10169.6 (3)C4—C12—C20—C15−178.4 (3)
C2—C3—C9—O2−176.7 (3)C22—O4—C21—O34.0 (5)
C4—C3—C9—O2−6.3 (4)C22—O4—C21—N2−177.5 (2)
O2—C9—C10—C11176.4 (3)C15—N2—C21—O3176.7 (3)
C3—C9—C10—C110.2 (5)C13—N2—C21—O3−3.2 (5)
C2—C1—C11—C10−0.8 (5)C15—N2—C21—O4−1.8 (4)
Br1—C1—C11—C10178.7 (3)C13—N2—C21—O4178.3 (2)
C9—C10—C11—C10.5 (5)C21—O4—C22—C25−63.4 (4)
C5—C4—C12—C13−120.3 (3)C21—O4—C22—C23179.7 (3)
C3—C4—C12—C13107.9 (3)C21—O4—C22—C2461.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.961.932.694 (4)135
C24—H24B···O30.962.372.961 (5)120
C11—H11···N1i0.932.533.404 (4)156

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5101).

References

  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  • Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–392. New York: Wiley.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Erdelyi, P., Fodor, T., Varga, A. K., Czugler, M. & Gere, A. (2008). Bioorg. Med. Chem.16, 5322–5330. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Furstner, A. (2003). Angew. Chem.115, 3706–3728.
  • Hou, X. L., Yang, Z. & Wong, H. N. C. (2003). Progress in Heterocyclic Chemistry, Vol. 15, edited by G. W. Gribble & T. L. Gilchrist, pp. 167–205. Oxford: Pergamon.
  • Liddell, J. R. (2002). Nat. Prod. Rep.19, 773–781. [PubMed]
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stormer, F. C., Koller, G. E. & Janak, K. (2004). Mycologist, 18, 114–117

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography