PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2101–o2102.
Published online 2010 July 24. doi:  10.1107/S1600536810028783
PMCID: PMC3007342

Monoclinic form I of clopidogrel hydrogen sulfate from powder diffraction data

Abstract

The asymmetric unit of the title compound, C16H17ClNO2S+·HSO4 , (I) [systematic name: (+)-(S)-5-[(2-chloro­phen­yl)(meth­oxy­carbon­yl)meth­yl]-4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-ium hydrogen sulfate], contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation; however, this differs from that observed in ortho­rhom­bic form (II) [Bousquet et al. (2003 [triangle]). US Patent No. 6 504 030]. The H—N—Cchiral—H fragment shows a trans conformation in both independent cations in (I) and a gauche conformation in (II). In (I), classical inter­molecular N—H(...)O and O—H(...)O hydrogen bonds link two independent cations and two independent anions into an isolated cluster, in which two cations inter­act with one anion only via N—H(...)O hydrogen bonds. Weak inter­molecular C—H(...)O hydrogen bonds further consolidate the crystal packing.

Related literature

For the characterization of six polymorphic forms of Clopidogrel hydrogensulfate, see: Badorc & Frehel (1989 [triangle]) (form I); Bousquet et al. (2003 [triangle]) (ortho­rhom­bic form II); Lifshitz-Liron et al. (2006 [triangle]) (forms III-VI). For recent studies of forms I and II, see: Raijada et al. (2010 [triangle]); Zupancic et al. (2010 [triangle]); Srivastava et al. (2010 [triangle]); Song et al. (2010 [triangle]). For details of the indexing algorithm, see: Werner et al. (1985 [triangle]). The methodology of the refinement (including applied restraints and constraints) was described in detail by Chernyshev et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2101-scheme1.jpg

Experimental

Crystal data

  • C16H17ClNO2S+·HSO4
  • M r = 419.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2101-efi1.jpg
  • a = 10.4315 (12) Å
  • b = 15.3345 (18) Å
  • c = 12.6320 (16) Å
  • β = 113.28 (2)°
  • V = 1856.1 (5) Å3
  • Z = 4
  • Cu Kα1 radiation, λ = 1.54059 Å
  • μ = 4.23 mm−1
  • T = 295 K
  • Flat sheet, 15 × 1 mm

Data collection

  • Guinier camera G670 diffractometer
  • Specimen mounting: thin layer in the specimen holder of the camera
  • Data collection mode: transmission
  • Scan method: continuous
  • min = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°

Refinement

  • R p = 0.019
  • R wp = 0.025
  • R exp = 0.015
  • R Bragg = 0.049
  • χ2 = 2.982
  • 8601 data points
  • 205 parameters
  • 155 restraints
  • H-atom parameters not refined

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002 [triangle]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992 [triangle]); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001 [triangle]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028783/lh5082sup1.cif

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810028783/lh5082Isup2.rtv

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Clopidogrel hydrogensulfate is an antiplatelet drug, which acts by selective and irreversible inhibition of ADP-induced platelet aggregation. The drug is available in the market as oral solid dosage form. Six different polymorphs are known for the drug - I (Badorc & Frehel, 1989), II (Bousquet et al., 2003) and III-VI (Lifshitz-Liron et al., 2006). However, only polymorphs I and II are used in pharmaceutical formulations (Bousquet et al., 2003), and, therefore, they are under intensive studies (Raijada et al., 2010; Zupan˘ci˘c et al., 2010; Srivastava et al., 2010; Song et al., 2010). The crystal structure of orthorhombic polymorph II has been reported by Bousquet et al. (2003). Herewith we report the crystal structure of the monoclinic polymorph I.

The asymmetric unit of I (Fig. 1), contains two independent cations of clopidogrel and two independent hydrogensulfate anions. The two independent cations are of similar conformation, which, however, differs from that observed in II. The H–N—Cchiral–H fragment shows a trans conformation in both independent cations in I and a gauche conformation in II.

The hydrogen-bonding motifs in I and II are essentially different too. In I, the classical intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link two independent cations and two independent anions into isolated cluster, where two cations interact with one anion only via N—H···O hydrogen bonds (Fig. 1). Weak intermolecular C—H···O hydrogen bonds (Table 1) consolidate further the crystal packing of I. In II, O—H···O hydrogen bonds link anions into linear chains, while N—H···O hydrogen bond attach one cation to one anion. These differences in crystal packings of Forms I and II may explain why II exhibits a lower solubility (and is more stable) than I.

Experimental

The title compound I was synthesized in accordance with the known procedure (Badorc & Frehel, 1989), and obtained as a white polycrystalline powder. Optical rotation [α]D +53.8° (c<ι> 1.9, CH3OH).

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20=37, using the first 30 peak positions. The same monoclinic unit-cell dimensions were reported in 2003 by Martin Vickers at http://img.chem.ucl.ac.uk/www/reports/clopi/clopi.htm.

The structure of was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Chernyshev et al., 2009). For non-H atoms, ten independent Uiso parameters were refined - six for six independent Cl and S atoms, two common Uiso for two groups of anion' oxygen atoms, and two common Uiso for the rest atoms in independent cations. H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figures

Fig. 1.
The content of asymmetric unit of I showing the atomic labeling and 40% probability displacement spheres. Dashed lines denote classical N—H···O and O—H···O hydrogen bonds.
Fig. 2.
The Rietveld plot, showing the observed and difference profiles for I. The reflection positions are shown above the difference profile.

Crystal data

C16H17ClNO2S+·HSO4Dx = 1.503 Mg m3
Mr = 419.89Melting point: 455(3) K
Monoclinic, P21Cu Kα1 radiation, λ = 1.54059 Å
a = 10.4315 (12) ŵ = 4.23 mm1
b = 15.3345 (18) ÅT = 295 K
c = 12.6320 (16) ÅParticle morphology: plate
β = 113.28 (2)°white
V = 1856.1 (5) Å3flat sheet, 15 × 1 mm
Z = 4Specimen preparation: Prepared at 295 K and 101 kPa
F(000) = 872

Data collection

Guinier camera G670 diffractometerData collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111)min = 4.00°, 2θmax = 90.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera

Refinement

Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle205 parameters
Rp = 0.019155 restraints
Rwp = 0.02542 constraints
Rexp = 0.015H-atom parameters not refined
RBragg = 0.049Weighting scheme based on measured s.u.'s
χ2 = 2.982(Δ/σ)max = 0.001
8601 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1A0.4095 (4)0.6092 (3)1.1269 (4)0.0731 (15)*
S1A−0.2971 (4)0.6556 (3)0.6216 (4)0.0642 (15)*
O1A0.2960 (8)0.9086 (7)0.9643 (8)0.065 (3)*
O2A0.2551 (8)0.8678 (6)1.1168 (7)0.065 (4)*
C2A−0.2033 (15)0.5796 (11)0.5834 (13)0.066 (6)*
H2A−0.24060.54480.51810.079*
C3A−0.0682 (14)0.5760 (10)0.6594 (12)0.065 (6)*
H3A−0.00300.53650.65470.078*
C4A0.1068 (13)0.6546 (11)0.8382 (12)0.065 (5)*
H4A10.12570.61250.89990.078*
H4A20.17510.64630.80480.078*
N5A0.1194 (10)0.7458 (9)0.8865 (9)0.065 (4)*
H5A0.12120.78310.83100.078*
C6A−0.0077 (15)0.7685 (9)0.9103 (12)0.066 (6)*
H6A10.00630.82550.94640.079*
H6A2−0.01610.72660.96470.079*
C7A−0.1428 (14)0.7696 (10)0.8044 (12)0.065 (6)*
H7A1−0.22140.77280.82690.078*
H7A2−0.14550.82010.75740.078*
C8A0.2536 (14)0.7586 (10)0.9906 (12)0.065 (6)*
H8A0.24910.72621.05590.078*
C9A0.3733 (14)0.7242 (10)0.9634 (12)0.065 (6)*
C10A0.4519 (12)0.6534 (11)1.0198 (12)0.065 (6)*
C11A0.5690 (13)0.6242 (10)1.0020 (12)0.065 (6)*
H11A0.62230.57661.04060.078*
C12A0.5986 (14)0.6727 (11)0.9213 (12)0.065 (6)*
H12A0.67030.65290.90130.078*
C13A0.5311 (13)0.7470 (11)0.8691 (12)0.065 (5)*
H13A0.56170.77920.82130.078*
C14A0.4160 (14)0.7729 (9)0.8893 (12)0.065 (6)*
H14A0.36690.82260.85360.078*
C15A0.2739 (15)0.8538 (10)1.0203 (12)0.065 (5)*
C16A0.2910 (14)0.9531 (10)1.1684 (13)0.066 (6)*
H16A0.27310.95531.23730.098*
H16B0.23570.99641.11510.098*
H16C0.38810.96421.18730.098*
C17A−0.1513 (14)0.6881 (10)0.7374 (12)0.065 (6)*
C18A−0.0391 (13)0.6396 (10)0.7466 (12)0.065 (6)*
Cl1B0.4361 (4)0.7397 (3)0.3437 (4)0.0692 (14)*
S1B−0.3489 (4)0.8614 (3)0.1741 (4)0.0670 (16)*
O1B0.1492 (9)0.6692 (7)0.5994 (8)0.072 (4)*
O2B0.3318 (9)0.6156 (6)0.5793 (8)0.072 (4)*
C2B−0.2713 (14)0.9258 (11)0.1059 (12)0.072 (6)*
H2B−0.31890.96640.04930.086*
C3B−0.1318 (13)0.9106 (12)0.1440 (12)0.072 (6)*
H3B−0.07320.93780.11460.087*
C4B0.0592 (15)0.8170 (11)0.2903 (13)0.072 (6)*
H4B10.12220.86650.31240.086*
H4B20.08220.78190.23630.086*
N5B0.0783 (11)0.7634 (8)0.3955 (10)0.072 (5)*
H5B0.06690.80060.44720.086*
C6B−0.0383 (15)0.6974 (10)0.3650 (13)0.072 (6)*
H6B1−0.01910.65780.42930.086*
H6B2−0.04110.66340.29930.086*
C7B−0.1796 (14)0.7400 (12)0.3363 (12)0.072 (6)*
H7B1−0.25350.69850.29740.086*
H7B2−0.18830.75870.40650.086*
C8B0.2241 (14)0.7255 (10)0.4537 (13)0.072 (6)*
H8B0.24380.68820.39890.086*
C9B0.3321 (15)0.7989 (10)0.4937 (13)0.071 (6)*
C10B0.4343 (15)0.8091 (11)0.4515 (13)0.072 (6)*
C11B0.5344 (14)0.8730 (10)0.4922 (12)0.072 (6)*
H11B0.60130.87960.46130.087*
C12B0.5345 (15)0.9267 (11)0.5787 (12)0.072 (6)*
H12B0.60450.96830.60830.086*
C13B0.4337 (13)0.9206 (11)0.6231 (13)0.072 (6)*
H13B0.43100.95990.67830.086*
C14B0.3367 (14)0.8543 (11)0.5828 (13)0.072 (6)*
H14B0.27240.84640.61620.087*
C15B0.2303 (14)0.6716 (12)0.5555 (13)0.072 (6)*
C16B0.3275 (14)0.5400 (11)0.6458 (12)0.072 (6)*
H16D0.40710.50380.65790.108*
H16E0.24360.50760.60490.108*
H16F0.32890.55830.71900.108*
C17B−0.1919 (15)0.8163 (11)0.2605 (13)0.072 (6)*
C18B−0.0874 (14)0.8485 (11)0.2336 (12)0.072 (6)*
S2A0.0232 (4)0.9234 (3)0.6166 (4)0.0572 (13)*
O3A0.0642 (12)0.8444 (8)0.6881 (9)0.115 (5)*
O4A−0.1156 (11)0.9512 (8)0.6065 (10)0.115 (5)*
O5A0.1279 (11)0.9964 (8)0.6804 (10)0.115 (5)*
H510.12601.00450.74390.173*
O6A0.0282 (11)0.9101 (10)0.5049 (10)0.115 (4)*
S2B−0.0311 (5)1.0685 (3)0.8780 (4)0.0692 (16)*
O3B−0.0818 (11)1.1589 (9)0.8583 (11)0.132 (5)*
O4B−0.0199 (13)1.0398 (9)0.9921 (11)0.133 (5)*
O5B−0.1420 (12)1.0105 (9)0.7869 (10)0.133 (5)*
H52−0.12641.00870.72830.200*
O6B0.1001 (12)1.0588 (9)0.8650 (10)0.133 (5)*

Geometric parameters (Å, °)

Cl1A—C10A1.721 (17)O2B—C16B1.44 (2)
S1A—C2A1.709 (18)C2B—C3B1.359 (19)
S1A—C17A1.716 (13)C2B—H2B0.9313
O1A—C15A1.18 (2)C3B—C18B1.41 (2)
O2A—C15A1.33 (2)C3B—H3B0.9305
O2A—C16A1.443 (18)C4B—C18B1.49 (2)
C2A—C3A1.357 (17)C4B—N5B1.51 (2)
C2A—H2A0.9313C4B—H4B10.9717
C3A—C18A1.41 (2)C4B—H4B20.9710
C3A—H3A0.9304N5B—C6B1.511 (19)
C4A—N5A1.51 (2)N5B—C8B1.519 (17)
C4A—C18A1.522 (16)N5B—H5B0.9092
C4A—H4A10.9699C6B—C7B1.52 (2)
C4A—H4A20.9674C6B—H6B10.9690
N5A—C8A1.508 (15)C6B—H6B20.9711
N5A—C6A1.51 (2)C7B—C17B1.49 (2)
N5A—H5A0.9102C7B—H7B10.9698
C6A—C7A1.512 (17)C7B—H7B20.9703
C6A—H6A10.9690C8B—C15B1.51 (2)
C6A—H6A20.9712C8B—C9B1.53 (2)
C7A—C17A1.49 (2)C8B—H8B0.9795
C7A—H7A10.9694C9B—C10B1.38 (3)
C7A—H7A20.9697C9B—C14B1.40 (2)
C8A—C15A1.50 (2)C10B—C11B1.37 (2)
C8A—C9A1.52 (2)C11B—C12B1.37 (2)
C8A—H8A0.9803C11B—H11B0.9312
C9A—C10A1.38 (2)C12B—C13B1.38 (3)
C9A—C14A1.40 (2)C12B—H12B0.9299
C10A—C11A1.40 (2)C13B—C14B1.38 (2)
C11A—C12A1.39 (2)C13B—H13B0.9301
C11A—H11A0.9303C14B—H14B0.9306
C12A—C13A1.36 (2)C16B—H16D0.9596
C12A—H12A0.9298C16B—H16E0.9613
C13A—C14A1.38 (2)C16B—H16F0.9609
C13A—H13A0.9307C17B—C18B1.36 (2)
C14A—H14A0.9297S2A—O6A1.447 (14)
C16A—H16A0.9589S2A—O4A1.466 (13)
C16A—H16B0.9591S2A—O3A1.470 (13)
C16A—H16C0.9607S2A—O5A1.549 (12)
C17A—C18A1.35 (2)O5A—H510.8200
Cl1B—C10B1.733 (18)S2B—O6B1.449 (15)
S1B—C2B1.710 (18)S2B—O4B1.468 (15)
S1B—C17B1.714 (14)S2B—O3B1.469 (15)
O1B—C15B1.18 (2)S2B—O5B1.549 (12)
O2B—C15B1.302 (19)O5B—H520.8200
C2A—S1A—C17A91.5 (7)C18B—C3B—H3B124.2
C15A—O2A—C16A117.1 (12)C18B—C4B—N5B110.7 (14)
C3A—C2A—S1A112.3 (12)C18B—C4B—H4B1109.4
C3A—C2A—H2A123.8N5B—C4B—H4B1109.6
S1A—C2A—H2A123.9C18B—C4B—H4B2109.5
C2A—C3A—C18A111.5 (14)N5B—C4B—H4B2109.7
C2A—C3A—H3A124.3H4B1—C4B—H4B2107.9
C18A—C3A—H3A124.2C4B—N5B—C6B109.1 (10)
N5A—C4A—C18A110.4 (11)C4B—N5B—C8B113.2 (13)
N5A—C4A—H4A1109.4C6B—N5B—C8B114.7 (11)
C18A—C4A—H4A1109.5C4B—N5B—H5B106.5
N5A—C4A—H4A2109.6C6B—N5B—H5B106.4
C18A—C4A—H4A2109.7C8B—N5B—H5B106.4
H4A1—C4A—H4A2108.3N5B—C6B—C7B112.3 (13)
C4A—N5A—C8A112.0 (10)N5B—C6B—H6B1109.2
C4A—N5A—C6A110.4 (11)C7B—C6B—H6B1109.2
C8A—N5A—C6A112.4 (11)N5B—C6B—H6B2109.0
C4A—N5A—H5A107.1C7B—C6B—H6B2109.1
C8A—N5A—H5A107.3H6B1—C6B—H6B2107.9
C6A—N5A—H5A107.2C17B—C7B—C6B108.7 (14)
N5A—C6A—C7A114.3 (13)C17B—C7B—H7B1109.9
N5A—C6A—H6A1108.7C6B—C7B—H7B1110.0
C7A—C6A—H6A1108.7C17B—C7B—H7B2109.9
N5A—C6A—H6A2108.6C6B—C7B—H7B2109.9
C7A—C6A—H6A2108.7H7B1—C7B—H7B2108.3
H6A1—C6A—H6A2107.6C15B—C8B—N5B108.6 (13)
C17A—C7A—C6A108.6 (12)C15B—C8B—C9B110.1 (12)
C17A—C7A—H7A1109.9N5B—C8B—C9B110.1 (12)
C6A—C7A—H7A1110.1C15B—C8B—H8B109.3
C17A—C7A—H7A2109.9N5B—C8B—H8B109.3
C6A—C7A—H7A2110.0C9B—C8B—H8B109.4
H7A1—C7A—H7A2108.4C10B—C9B—C14B117.3 (14)
C15A—C8A—N5A109.6 (11)C10B—C9B—C8B122.5 (15)
C15A—C8A—C9A110.4 (13)C14B—C9B—C8B120.0 (16)
N5A—C8A—C9A108.7 (12)C11B—C10B—C9B121.7 (16)
C15A—C8A—H8A109.3C11B—C10B—Cl1B119.3 (14)
N5A—C8A—H8A109.5C9B—C10B—Cl1B119.0 (11)
C9A—C8A—H8A109.4C12B—C11B—C10B119.3 (16)
C10A—C9A—C14A119.0 (15)C12B—C11B—H11B120.4
C10A—C9A—C8A122.2 (15)C10B—C11B—H11B120.3
C14A—C9A—C8A118.3 (13)C11B—C12B—C13B121.7 (14)
C9A—C10A—C11A123.2 (16)C11B—C12B—H12B119.3
C9A—C10A—Cl1A115.6 (12)C13B—C12B—H12B119.0
C11A—C10A—Cl1A120.8 (11)C12B—C13B—C14B117.8 (16)
C12A—C11A—C10A114.0 (13)C12B—C13B—H13B121.1
C12A—C11A—H11A122.8C14B—C13B—H13B121.1
C10A—C11A—H11A123.2C13B—C14B—C9B122.1 (16)
C13A—C12A—C11A125.4 (16)C13B—C14B—H14B118.9
C13A—C12A—H12A117.3C9B—C14B—H14B119.1
C11A—C12A—H12A117.3O1B—C15B—O2B122.7 (16)
C12A—C13A—C14A118.2 (16)O1B—C15B—C8B128.3 (14)
C12A—C13A—H13A121.0O2B—C15B—C8B108.3 (14)
C14A—C13A—H13A120.8O2B—C16B—H16D109.6
C13A—C14A—C9A119.9 (13)O2B—C16B—H16E109.5
C13A—C14A—H14A120.0H16D—C16B—H16E109.4
C9A—C14A—H14A120.1O2B—C16B—H16F109.6
O1A—C15A—O2A124.9 (15)H16D—C16B—H16F109.4
O1A—C15A—C8A125.7 (15)H16E—C16B—H16F109.3
O2A—C15A—C8A109.3 (14)C18B—C17B—C7B125.1 (13)
O2A—C16A—H16A109.5C18B—C17B—S1B110.7 (12)
O2A—C16A—H16B109.4C7B—C17B—S1B123.0 (12)
H16A—C16A—H16B109.6C17B—C18B—C3B113.9 (13)
O2A—C16A—H16C109.3C17B—C18B—C4B122.3 (14)
H16A—C16A—H16C109.5C3B—C18B—C4B123.7 (15)
H16B—C16A—H16C109.5O6A—S2A—O4A111.8 (7)
C18A—C17A—C7A123.8 (12)O6A—S2A—O3A111.7 (8)
C18A—C17A—S1A111.0 (12)O4A—S2A—O3A109.3 (8)
C7A—C17A—S1A124.1 (11)O6A—S2A—O5A108.6 (8)
C17A—C18A—C3A113.7 (11)O4A—S2A—O5A107.7 (7)
C17A—C18A—C4A123.6 (14)O3A—S2A—O5A107.6 (6)
C3A—C18A—C4A122.7 (13)S2A—O5A—H51109.5
C2B—S1B—C17B91.7 (8)O6B—S2B—O4B111.6 (7)
C15B—O2B—C16B117.0 (13)O6B—S2B—O3B111.8 (8)
C3B—C2B—S1B112.1 (12)O4B—S2B—O3B109.5 (8)
C3B—C2B—H2B123.8O6B—S2B—O5B108.6 (8)
S1B—C2B—H2B124.0O4B—S2B—O5B107.6 (8)
C2B—C3B—C18B111.5 (15)O3B—S2B—O5B107.6 (7)
C2B—C3B—H3B124.3S2B—O5B—H52109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5A—H5A···O3A0.911.912.785 (16)161
N5B—H5B···O6A0.911.942.795 (19)157
O5A—H51···O6B0.821.852.640 (17)161
O5B—H52···O4A0.821.822.567 (17)152
C4A—H4A1···O4Bi0.972.353.17 (2)142
C4A—H4A2···O1B0.972.523.225 (17)129
C3B—H3B···O4Bii0.932.413.28 (2)154
C6A—H6A2···O3Bi0.972.313.175 (19)149
C4B—H4B2···O3Biii0.972.233.13 (2)154

Symmetry codes: (i) −x, y−1/2, −z+2; (ii) x, y, z−1; (iii) −x, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5082).

References

  • Badorc, A. & Frehel, D. (1989). US Patent No. 4 847 265.
  • Bousquet, A., Castro, B. & Germain, J. S. (2003). US Patent No. 6 504 030.
  • Chernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020–o2021. [PMC free article] [PubMed]
  • Huber (2002). G670 Imaging Plate Guinier Camera Software Huber Diffraktionstechnik GmbH, Rimsting, Germany.
  • Lifshitz-Liron, R., Kovalevski-Ishai, E., Wizel, S., Avhar-Maydan, S. & Lidor-Hadas, R. (2006). US Patent No. 7 074 928.
  • Raijada, D. K., Prasad, B., Paudel, A., Shah, R. P. & Singh, S. (2010). J. Pharm. Biomed. Anal.52, 332–344. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, L., Li, M. & Gong, J. (2010). J. Chem. Eng. Data DOI:10.1021/je100022w.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srivastava, A., Mishra, S., Tandon, P., Patel, S., Ayala, A. P., Bansal, A. K. & Siesler, H. W. (2010). J. Mol. Struct.964, 88–96.
  • Toraya, H. (1986). J. Appl. Cryst.19, 440–447.
  • Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst.18, 367–370.
  • Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr.216, 5–9.
  • Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst.25, 447–451.
  • Zupancic, V., Kotar-Jordan, B., Plevnik, M., Smrkolj, M. & Vrecer, F. (2010). Pharmazie, 65, 388–389.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography