PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m983–m984.
Published online 2010 July 21. doi:  10.1107/S1600536810023615
PMCID: PMC3007338

Poly[[[aqua(2,2′-bipyridine-κ2 N,N′)zinc(II)]-μ-2-nitroterephthalato-κ2 O 1:O 4] monohydrate]

Abstract

In the title compound, {[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O}n, the ZnII ion is square-pyramidally coordinated, and bridged by 2-nitro-terephthalate ligands, forming a chain running along [1An external file that holds a picture, illustration, etc.
Object name is e-66-0m983-efi1.jpg0]. Intra­molecular hydrogen bonds are formed between the coordinated water mol­ecules and the nitro O atoms. Adjacent chains are linked by hydrogen bonds between the coordinated water mol­ecules and the O atoms of the monodentate carboxyl groups.

Related literature

Benzene polycarb­oxy­lic acids and nitro­gen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydro­thermal synthesis, see: Huang et al. (2008 [triangle]); Ma et al. (2005 [triangle]); Song et al. (2006 [triangle]); Wang et al. (2005 [triangle]); Yang et al. (2002 [triangle], 2003a [triangle],b [triangle],c [triangle]); Zhang et al. (2003 [triangle], 2007 [triangle]); Zhou et al. (2009a [triangle]) The substituents on the benzene polycarb­oxy­lic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009 [triangle]); Zhou et al. (2009b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m983-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O
  • M r = 466.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m983-efi2.jpg
  • a = 8.5570 (5) Å
  • b = 9.1074 (5) Å
  • c = 12.2060 (7) Å
  • α = 84.558 (1)°
  • β = 76.863 (1)°
  • γ = 73.692 (1)°
  • V = 888.58 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.44 mm−1
  • T = 297 K
  • 0.41 × 0.36 × 0.33 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.590, T max = 0.648
  • 5326 measured reflections
  • 3915 independent reflections
  • 3739 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.119
  • S = 1.10
  • 3915 reflections
  • 285 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023615/kp2266sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023615/kp2266Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.

supplementary crystallographic information

Comment

Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.

In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, ix - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).

Experimental

The suspension of 2-nitro-terephthalic acid (0.042 g, 0.20 mmol) and 2,2'-bipyridine (0.033 g, 0.20 mmol) in H2O (10 mL) was vigorously stirred, aqueous solution of sodium hydroxide (2 mol/L) was slowly added until the pH value was adjusted to 7, and then ZnCl2 (0.027 g, 0.20 mmol) was added. The solution was placed in a 20 mL Teflon-lined vessel, heated to 453 K at the rate of 0.2 K/min, and kept at 453 K for 3 days, and then slowly cooled down to room temperature at the rate of 0.1 K/min. Yellow block crystals (0.035 g, yield 38%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C18H15N3O8Zn, found (calc.) C 47.23 (46.32), H 3.30 (3.24), N 9.18 (9.00).

Refinement

The position of the water H atom were refined with O–H distance restrained to 0.85 Å, with their temperature factors set to 1.2 times those of the parent atoms. The aromatic H atoms were generated geometrically (C–H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms.

Figures

Fig. 1.
The coordination environment of zinc ion in I with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are showm in green dashed line. Symmetry codes: (i) x - 1, y + 1, z.
Fig. 2.
A perspective view of the one-dimensional chain of I.

Crystal data

[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2OZ = 2
Mr = 466.70F(000) = 476
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5570 (5) ÅCell parameters from 4213 reflections
b = 9.1074 (5) Åθ = 2.3–28.5°
c = 12.2060 (7) ŵ = 1.44 mm1
α = 84.558 (1)°T = 297 K
β = 76.863 (1)°Block, yellow
γ = 73.692 (1)°0.41 × 0.36 × 0.33 mm
V = 888.58 (9) Å3

Data collection

Bruker SMART APEX area-detector diffractometer3915 independent reflections
Radiation source: fine-focus sealed tube3739 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scanθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.590, Tmax = 0.648k = −11→11
5326 measured reflectionsl = −15→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0588P)2 + 0.302P] where P = (Fo2 + 2Fc2)/3
3915 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.65 e Å3
4 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.10197 (3)0.50965 (3)0.27688 (2)0.02770 (12)
O10.3177 (2)0.3927 (2)0.31591 (17)0.0375 (4)
O1W−0.0424 (3)0.4071 (2)0.40216 (18)0.0373 (4)
H1A−0.131 (3)0.463 (3)0.440 (3)0.043 (10)*
H1B−0.003 (4)0.340 (3)0.448 (2)0.043 (10)*
O20.3290 (3)0.4075 (3)0.49422 (19)0.0493 (6)
O2W0.4501 (5)0.3808 (4)0.6976 (2)0.0700 (8)
H2A0.425 (6)0.386 (6)0.634 (2)0.084*
H2B0.547 (3)0.392 (6)0.673 (4)0.084*
O31.0362 (3)−0.2228 (3)0.4031 (2)0.0547 (6)
O40.9149 (3)−0.3030 (2)0.2882 (2)0.0460 (5)
O50.2308 (3)0.1110 (3)0.3586 (2)0.0519 (6)
O60.3909 (4)0.0225 (4)0.2029 (3)0.0690 (8)
N10.2312 (3)0.6052 (2)0.12874 (19)0.0302 (4)
N20.0999 (3)0.3715 (2)0.15004 (19)0.0306 (5)
N30.3663 (3)0.0691 (3)0.2970 (2)0.0368 (5)
C10.5136 (3)0.2006 (3)0.3915 (2)0.0258 (5)
C20.5128 (3)0.0739 (3)0.3376 (2)0.0274 (5)
C30.6443 (3)−0.0554 (3)0.3223 (2)0.0317 (5)
H3A0.6396−0.13780.28470.038*
C40.7833 (3)−0.0609 (3)0.3636 (2)0.0304 (5)
C50.7895 (3)0.0643 (3)0.4159 (2)0.0343 (6)
H5A0.88400.06190.44220.041*
C60.6559 (3)0.1934 (3)0.4294 (2)0.0318 (5)
H6A0.66210.27710.46480.038*
C70.3725 (3)0.3455 (3)0.4030 (2)0.0283 (5)
C80.9233 (4)−0.2058 (3)0.3517 (2)0.0376 (6)
C90.2869 (4)0.7290 (3)0.1244 (3)0.0378 (6)
H9A0.27100.77950.19040.045*
C100.3665 (4)0.7837 (3)0.0258 (3)0.0440 (7)
H10A0.40410.87030.02480.053*
C110.3905 (4)0.7090 (4)−0.0723 (3)0.0448 (7)
H11A0.44570.7438−0.14020.054*
C120.3314 (4)0.5822 (3)−0.0682 (2)0.0395 (6)
H12A0.34540.5303−0.13330.047*
C130.2514 (3)0.5336 (3)0.0338 (2)0.0302 (5)
C140.1825 (3)0.3991 (3)0.0464 (2)0.0306 (5)
C150.1997 (4)0.3087 (4)−0.0424 (3)0.0438 (7)
H15A0.25590.3304−0.11400.053*
C160.1324 (5)0.1859 (4)−0.0232 (3)0.0510 (8)
H16A0.14400.1225−0.08160.061*
C170.0489 (4)0.1579 (4)0.0818 (3)0.0464 (7)
H17A0.00200.07570.09600.056*
C180.0344 (4)0.2527 (3)0.1669 (3)0.0389 (6)
H18A−0.02310.23320.23870.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02659 (18)0.02438 (17)0.02802 (18)0.00097 (12)−0.00622 (12)−0.00332 (11)
O10.0309 (10)0.0370 (10)0.0351 (10)0.0057 (8)−0.0081 (8)0.0037 (8)
O1W0.0307 (10)0.0347 (10)0.0358 (11)0.0018 (8)0.0006 (8)0.0006 (8)
O20.0432 (12)0.0515 (12)0.0397 (12)0.0159 (10)−0.0096 (10)−0.0196 (10)
O2W0.096 (2)0.088 (2)0.0453 (15)−0.0528 (19)−0.0214 (15)0.0056 (14)
O30.0361 (12)0.0516 (13)0.0633 (16)0.0094 (10)−0.0150 (11)0.0090 (11)
O40.0421 (12)0.0311 (10)0.0485 (13)0.0097 (9)0.0000 (10)−0.0035 (9)
O50.0312 (11)0.0619 (14)0.0611 (15)−0.0123 (10)−0.0113 (10)0.0092 (12)
O60.0621 (17)0.0779 (18)0.0722 (18)−0.0005 (14)−0.0334 (15)−0.0364 (15)
N10.0317 (11)0.0271 (10)0.0298 (11)−0.0043 (8)−0.0068 (9)−0.0017 (8)
N20.0302 (11)0.0288 (10)0.0323 (11)−0.0032 (8)−0.0101 (9)−0.0032 (8)
N30.0367 (13)0.0285 (11)0.0477 (14)−0.0062 (9)−0.0173 (11)0.0000 (10)
C10.0237 (11)0.0238 (10)0.0248 (11)0.0002 (9)−0.0033 (9)0.0002 (9)
C20.0265 (12)0.0262 (11)0.0287 (12)−0.0051 (9)−0.0073 (9)0.0015 (9)
C30.0350 (14)0.0240 (11)0.0329 (13)−0.0027 (10)−0.0055 (11)−0.0049 (9)
C40.0285 (12)0.0254 (11)0.0293 (12)0.0010 (9)−0.0016 (10)0.0027 (9)
C50.0259 (12)0.0378 (13)0.0365 (14)−0.0012 (10)−0.0106 (11)0.0001 (11)
C60.0300 (13)0.0291 (12)0.0356 (14)−0.0027 (10)−0.0103 (11)−0.0057 (10)
C70.0232 (11)0.0246 (11)0.0319 (13)−0.0003 (9)−0.0028 (10)−0.0009 (9)
C80.0333 (14)0.0281 (12)0.0368 (15)0.0039 (11)0.0036 (11)0.0064 (11)
C90.0405 (15)0.0309 (13)0.0417 (16)−0.0078 (11)−0.0087 (12)−0.0047 (11)
C100.0459 (17)0.0334 (14)0.0508 (18)−0.0131 (13)−0.0053 (14)0.0033 (12)
C110.0468 (17)0.0478 (17)0.0371 (16)−0.0145 (14)−0.0038 (13)0.0054 (13)
C120.0451 (16)0.0413 (15)0.0301 (14)−0.0093 (12)−0.0055 (12)−0.0035 (11)
C130.0278 (12)0.0287 (11)0.0310 (13)−0.0008 (10)−0.0074 (10)−0.0037 (10)
C140.0297 (12)0.0288 (11)0.0317 (13)−0.0017 (10)−0.0096 (10)−0.0039 (10)
C150.0501 (18)0.0452 (16)0.0371 (15)−0.0095 (14)−0.0110 (13)−0.0125 (13)
C160.063 (2)0.0447 (17)0.053 (2)−0.0159 (16)−0.0197 (17)−0.0158 (14)
C170.0522 (19)0.0402 (15)0.0542 (19)−0.0177 (14)−0.0179 (15)−0.0055 (14)
C180.0406 (15)0.0386 (14)0.0385 (15)−0.0108 (12)−0.0105 (12)0.0001 (12)

Geometric parameters (Å, °)

Zn1—O11.9922 (19)C3—C41.381 (4)
Zn1—O1W2.063 (2)C3—H3A0.9300
Zn1—O4i1.976 (2)C4—C51.377 (4)
Zn1—N12.141 (2)C4—C81.506 (3)
Zn1—N22.091 (2)C5—C61.383 (4)
O1—C71.249 (3)C5—H5A0.9300
O1W—H1A0.85 (3)C6—H6A0.9300
O1W—H1B0.84 (3)C9—C101.366 (4)
O2—C71.230 (3)C9—H9A0.9300
O2W—H2A0.85 (3)C10—C111.379 (5)
O2W—H2B0.85 (3)C10—H10A0.9300
O3—C81.234 (4)C11—C121.377 (4)
O4—C81.257 (4)C11—H11A0.9300
O4—Zn1ii1.976 (2)C12—C131.376 (4)
O5—N31.210 (3)C12—H12A0.9300
O6—N31.215 (3)C13—C141.483 (4)
N1—C91.334 (4)C14—C151.380 (4)
N1—C131.337 (3)C15—C161.374 (5)
N2—C181.332 (4)C15—H15A0.9300
N2—C141.340 (4)C16—C171.357 (5)
N3—C21.461 (3)C16—H16A0.9300
C1—C61.381 (4)C17—C181.375 (4)
C1—C21.384 (3)C17—H17A0.9300
C1—C71.510 (3)C18—H18A0.9300
C2—C31.375 (3)
O1—Zn1—O1W95.05 (8)C1—C6—C5121.3 (2)
O1—Zn1—N190.59 (8)C1—C6—H6A119.3
O1—Zn1—N298.69 (9)C5—C6—H6A119.3
O1W—Zn1—N1170.66 (9)O2—C7—O1127.0 (2)
O1W—Zn1—N294.61 (9)O2—C7—C1117.3 (2)
O4i—Zn1—O1149.63 (10)O1—C7—C1115.6 (2)
O4i—Zn1—O1W89.11 (9)O3—C8—O4124.5 (3)
O4i—Zn1—N189.79 (9)O3—C8—C4119.8 (3)
O4i—Zn1—N2110.97 (10)O4—C8—C4115.8 (3)
N1—Zn1—N277.14 (9)N1—C9—C10121.9 (3)
C7—O1—Zn1137.57 (18)N1—C9—H9A119.1
Zn1—O1W—H1A118 (2)C10—C9—H9A119.1
Zn1—O1W—H1B124 (2)C9—C10—C11119.2 (3)
H1A—O1W—H1B106 (3)C9—C10—H10A120.4
H2A—O2W—H2B96 (5)C11—C10—H10A120.4
C8—O4—Zn1ii113.6 (2)C12—C11—C10119.0 (3)
C9—N1—C13119.3 (2)C12—C11—H11A120.5
C9—N1—Zn1125.6 (2)C10—C11—H11A120.5
C13—N1—Zn1115.06 (17)C13—C12—C11118.9 (3)
C18—N2—C14118.6 (2)C13—C12—H12A120.6
C18—N2—Zn1124.7 (2)C11—C12—H12A120.6
C14—N2—Zn1116.48 (18)N1—C13—C12121.7 (3)
O5—N3—O6124.9 (3)N1—C13—C14115.5 (2)
O5—N3—C2118.3 (3)C12—C13—C14122.8 (2)
O6—N3—C2116.7 (3)N2—C14—C15121.7 (3)
C6—C1—C2116.8 (2)N2—C14—C13115.6 (2)
C6—C1—C7120.2 (2)C15—C14—C13122.7 (3)
C2—C1—C7122.9 (2)C16—C15—C14118.9 (3)
C3—C2—C1123.1 (2)C16—C15—H15A120.5
C3—C2—N3116.1 (2)C14—C15—H15A120.5
C1—C2—N3120.8 (2)C17—C16—C15119.4 (3)
C2—C3—C4118.9 (2)C17—C16—H16A120.3
C2—C3—H3A120.6C15—C16—H16A120.3
C4—C3—H3A120.6C16—C17—C18119.2 (3)
C5—C4—C3119.6 (2)C16—C17—H17A120.4
C5—C4—C8121.8 (3)C18—C17—H17A120.4
C3—C4—C8118.6 (3)N2—C18—C17122.3 (3)
C4—C5—C6120.4 (3)N2—C18—H18A118.9
C4—C5—H5A119.8C17—C18—H18A118.9
C6—C5—H5A119.8
O4i—Zn1—O1—C758.0 (4)C6—C1—C7—O2−46.1 (4)
O1W—Zn1—O1—C7−38.9 (3)C2—C1—C7—O2137.9 (3)
N2—Zn1—O1—C7−134.3 (3)C6—C1—C7—O1130.8 (3)
N1—Zn1—O1—C7148.6 (3)C2—C1—C7—O1−45.1 (3)
O4i—Zn1—N1—C964.9 (2)Zn1ii—O4—C8—O30.0 (4)
O1—Zn1—N1—C9−84.8 (2)Zn1ii—O4—C8—C4−179.80 (17)
N2—Zn1—N1—C9176.5 (2)C5—C4—C8—O310.4 (4)
O4i—Zn1—N1—C13−113.31 (19)C3—C4—C8—O3−168.5 (3)
O1—Zn1—N1—C1397.06 (19)C5—C4—C8—O4−169.8 (3)
N2—Zn1—N1—C13−1.72 (18)C3—C4—C8—O411.3 (4)
O4i—Zn1—N2—C18−96.8 (2)C13—N1—C9—C10−1.0 (4)
O1—Zn1—N2—C1889.8 (2)Zn1—N1—C9—C10−179.1 (2)
O1W—Zn1—N2—C18−6.0 (2)N1—C9—C10—C11−0.1 (5)
N1—Zn1—N2—C18178.4 (2)C9—C10—C11—C120.8 (5)
O4i—Zn1—N2—C1488.66 (19)C10—C11—C12—C13−0.4 (5)
O1—Zn1—N2—C14−84.70 (19)C9—N1—C13—C121.4 (4)
O1W—Zn1—N2—C14179.47 (18)Zn1—N1—C13—C12179.7 (2)
N1—Zn1—N2—C143.91 (18)C9—N1—C13—C14−178.8 (2)
C6—C1—C2—C30.8 (4)Zn1—N1—C13—C14−0.5 (3)
C7—C1—C2—C3176.8 (2)C11—C12—C13—N1−0.7 (4)
C6—C1—C2—N3178.4 (2)C11—C12—C13—C14179.5 (3)
C7—C1—C2—N3−5.5 (4)C18—N2—C14—C150.5 (4)
O5—N3—C2—C3132.7 (3)Zn1—N2—C14—C15175.4 (2)
O6—N3—C2—C3−47.2 (4)C18—N2—C14—C13179.7 (2)
O5—N3—C2—C1−45.1 (3)Zn1—N2—C14—C13−5.4 (3)
O6—N3—C2—C1135.0 (3)N1—C13—C14—N23.8 (3)
C1—C2—C3—C40.8 (4)C12—C13—C14—N2−176.4 (2)
N3—C2—C3—C4−176.9 (2)N1—C13—C14—C15−176.9 (3)
C2—C3—C4—C5−2.0 (4)C12—C13—C14—C152.9 (4)
C2—C3—C4—C8177.0 (2)N2—C14—C15—C16−1.0 (5)
C3—C4—C5—C61.5 (4)C13—C14—C15—C16179.8 (3)
C8—C4—C5—C6−177.4 (2)C14—C15—C16—C170.9 (5)
C2—C1—C6—C5−1.2 (4)C15—C16—C17—C18−0.4 (5)
C7—C1—C6—C5−177.4 (2)C14—N2—C18—C170.1 (4)
C4—C5—C6—C10.1 (4)Zn1—N2—C18—C17−174.4 (2)
Zn1—O1—C7—O2−33.2 (5)C16—C17—C18—N2−0.1 (5)
Zn1—O1—C7—C1150.2 (2)

Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.85 (3)1.83 (3)2.670 (3)174 (4)
O1W—H1B···O3iv0.84 (3)2.02 (2)2.779 (3)150 (3)
O1W—H1B···O50.84 (3)2.58 (3)3.031 (3)115 (3)
O2W—H2A···O20.85 (3)2.03 (3)2.865 (4)171 (5)
O2W—H2B···O1v0.85 (3)2.57 (4)3.213 (4)134 (4)

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2266).

References

  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, R.-Y., Kong, X.-J. & Liu, G.-X. (2008). J. Inorg. Organomet. Polym.18, 304–308.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Ma, A.-Q., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m483–m484.
  • Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). Appl. Organomet. Chem.20, 44–50.
  • Wang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123–m125.
  • Yang, S.-Y., Hu, J.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003a). Appl. Organomet. Chem.17, 815–816.
  • Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003b). Acta Cryst. E59, m731–m733.
  • Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003c). Appl. Organomet. Chem.17, 877–878.
  • Yang, S.-Y., Long, L.-S., Tao, J., Huang, R.-B. & Zheng, L.-S. (2002). Main Group. Met. Chem.25, 699–700.
  • Zhang, K.-L., Gao, H.-Y., Pan, Z.-C., Liang, W. & Diao, G.-W. (2007). Polyhedron, 26, 5177–5184.
  • Zhang, X.-M., Tong, M.-L., Gong, M.-L. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 138–142.
  • Zhou, D.-S., Sun, D., Yang, S.-Y. & Huang, R.-B. (2009a). Acta Cryst. E65, m1078–m1079. [PMC free article] [PubMed]
  • Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009b). CrystEngComm, 11, 2548–2554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography