PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1895.
Published online 2010 July 3. doi:  10.1107/S1600536810024888
PMCID: PMC3007337

2-(2,4-Dinitro­benz­yl)pyridinium 2-hy­droxy-3,5-dinitro­benzoate

Abstract

In the structure of the title salt, C12H10N3O4 +·C7H3N2O7 , the cations and the anions are linked by a single N+—H(...)Ocarbox­yl hydrogen bond, the discrete cation–anion unit having no inter­molecular associations other than weak cation–anion aromatic ring π–π inter­actions [ring centroid separation = 3.7320 (14) Å] and a number of weak inter-unit aromatic C—H(...)O contacts. An intramolecular C—H(...)O hydrox­yl–carboxyl hydrogen bond occurs in the anion.

Related literature

For structural data on 2-(2,4-dinitro­benz­yl)pyridine and related compounds, see: Seff & Trueblood (1968 [triangle]); Scherl et al. (1996 [triangle]); Naumov et al. (2002 [triangle], 2005 [triangle]); Smith, Wermuth & Young (2010 [triangle]). For some structures of 3,5-dinitro­salicylic acid salts of Lewis bases, see: Smith et al. (2002 [triangle], 2003 [triangle], 2007 [triangle]); Smith, Cotton et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1895-scheme1.jpg

Experimental

Crystal data

  • C12H10N3O4 +·C7H3N2O7
  • M r = 487.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1895-efi1.jpg
  • a = 7.1550 (2) Å
  • b = 21.7356 (5) Å
  • c = 13.2080 (4) Å
  • β = 104.424 (3)°
  • V = 1989.34 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 200 K
  • 0.40 × 0.35 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.960, T max = 0.982
  • 13759 measured reflections
  • 3910 independent reflections
  • 2865 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.153
  • S = 1.08
  • 3910 reflections
  • 320 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024888/ez2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024888/ez2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) is unusual because of its photochromic properties, undergoing a reversible solid-state colour change from colourless to deep blue on irradiation with light of wavelength 400 nm or less. This is due to two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group and the pyridine N atom (Naumov et al., 2002). The structures of both the colourless form (Seff & Trueblood, 1968; Scherl et al., 1996) and the blue form (Naumov et al., 2002), have been determined as well, as that of the chloride (Naumov et al., 2005).

Our reaction of DNBP with a number of aromatic carboxylic and sulfonic acids in aqueous ethanol has previously provided only one crystalline compound: bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate, for which the structure was reported (Smith, Wermuth & Young, 2010). A second crystalline compound was subsequently obtained from the reaction of DNBP with 3,5-dinitrosalicylic acid (DNSA), the title compound anhydrous C12H10N3O4+.C7H3N2O7- (I), the structure of which is reported here. DNSA has been very useful as an acid capable of producing crystalline salts with a range of both aliphatic and aromatic Lewis bases and the structures of a large number of these are reported in the crystallographic literature, e.g. Smith et al. (2002, 2003, 2007) and Smith, Cotton et al. (2010).

With compound (I) (Fig. 1), a single cation–anion N+H···Ocarboxyl hydrogen bond together with a weak aliphatic CH···Ocarboxyl association (C71–H···O11A) (Table 1), form discrete cation–anion units. These units have no intermolecular interactions other than mostly weak aromatic C–H···O contacts [one is strong: C6–H···O31Aiii: symmetry code (iii), -x + 1, -y + 1, -z + 1], and also weak cation–anion π–π aromatic ring associations [ring centroid separation for C11–C61 to C1A–C6A, 3.7320 (14) Å] down the a axial direction (Fig. 2).

With the DNBP cation both nitro groups are rotated out of the plane of the benzene ring [torsion angles C11–C21–N21–O22, -151.4 (2)° and C31–C41–N41–O42, 149.9 (2)°]. In the DNSA anion, within the intramolecular hydroxyl–carboxyl hydrogen bond, the H atom is located on the hydroxyl group rather than being anti-related on the carboxyl group. (I) is only one of the ca 30% of the known examples of DNSA salts having this (Smith et al., 2007). The carboxyl group, as expected, is close to planar with the benzene ring [torsion angle C2A–C1A–C11A–O11A, 175.0 (2)°], while one nitro group is close to coplanar [torsion angle C4A–C5A–C51A–O52A, 177.6 (2)°], the other being rotated out of the plane [torsion angle C2A–C3A–C31A–O32A, -159.1 (2)°]. In the structure there is a short nonbonded contact across an inversion centre [O42···O42iv, 2.897 (3) Å: symmetry code (iv) -x + 1, -y, -z + 1], this O atom being associated with the large electron density maximum (0.75 e Å-3).

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 2-(2,4-dinitrobenzyl)pyridine and 3,5-dinitrosalicylic acid in 50 ml of 50% ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave yellow plates (m.p. 383 K) having 90° yellow–colourless orientational dichroism in the crystals.

Refinement

The two hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and were constrained in the refinement with the other H atoms at calculated positions [C–H = 0.93 Å (aromatic) and 0.97 Å (aliphatic)] and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. There is a larger than normal maximum residual electron density peak (0.75 e Å-3) which is located ca 1.56 Å from the nitro O atom O42).

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the DNBP cation and the DNSA anion in the asymmetric unit of (I), with the hydrogen bonds shown as a dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The packing of the cation–anion pairs in the unit cell viewed down the a cell direction. Non-interactive H atoms are omitted.

Crystal data

C12H10N3O4+·C7H3N2O7F(000) = 1000
Mr = 487.34Dx = 1.627 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1550 (2) ÅCell parameters from 6248 reflections
b = 21.7356 (5) Åθ = 3.1–28.7°
c = 13.2080 (4) ŵ = 0.14 mm1
β = 104.424 (3)°T = 200 K
V = 1989.34 (10) Å3Plate, yellow
Z = 40.40 × 0.35 × 0.18 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer3910 independent reflections
Radiation source: Enhance (Mo) X-ray source2865 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→5
Tmin = 0.960, Tmax = 0.982k = −26→26
13759 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0819P)2 + 0.673P] where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O211.2566 (3)0.22969 (10)0.63986 (18)0.0562 (8)
O221.1932 (4)0.18930 (12)0.48691 (19)0.0733 (10)
O410.7828 (4)0.00564 (10)0.43481 (18)0.0635 (9)
O420.6790 (3)−0.02169 (9)0.56819 (19)0.0577 (8)
N10.6649 (3)0.32238 (8)0.69232 (15)0.0274 (6)
N211.1587 (3)0.19783 (10)0.57118 (18)0.0365 (7)
N410.7462 (3)0.01652 (11)0.5177 (2)0.0458 (8)
C20.7755 (3)0.28074 (10)0.75516 (18)0.0267 (7)
C30.7361 (4)0.26743 (11)0.84941 (19)0.0316 (7)
C40.5867 (4)0.29735 (12)0.87819 (19)0.0345 (8)
C50.4801 (4)0.34101 (12)0.8133 (2)0.0376 (8)
C60.5212 (4)0.35297 (12)0.7190 (2)0.0359 (8)
C110.8856 (3)0.19180 (10)0.65949 (17)0.0250 (7)
C210.9877 (3)0.16655 (10)0.59134 (18)0.0268 (7)
C310.9395 (3)0.11127 (11)0.5400 (2)0.0322 (8)
C410.7909 (4)0.07812 (11)0.5632 (2)0.0353 (8)
C510.6845 (4)0.10000 (12)0.6292 (2)0.0359 (8)
C610.7296 (3)0.15746 (11)0.67349 (19)0.0307 (7)
C710.9381 (3)0.25231 (10)0.7169 (2)0.0308 (7)
O2A0.7053 (3)0.51546 (8)0.39374 (15)0.0389 (6)
O11A0.7728 (2)0.34274 (8)0.51916 (13)0.0363 (6)
O12A0.6246 (3)0.43376 (8)0.50643 (15)0.0404 (6)
O31A0.8926 (3)0.60447 (8)0.32114 (17)0.0482 (7)
O32A1.0404 (4)0.57457 (11)0.20856 (19)0.0703 (10)
O51A1.4121 (3)0.38998 (10)0.28140 (17)0.0514 (7)
O52A1.3387 (3)0.32069 (9)0.38239 (19)0.0536 (7)
N31A0.9667 (3)0.56457 (10)0.28107 (17)0.0388 (7)
N51A1.3139 (3)0.37048 (10)0.33857 (18)0.0375 (7)
C1A0.8825 (3)0.42179 (10)0.42470 (17)0.0254 (6)
C2A0.8508 (3)0.48139 (11)0.38128 (18)0.0276 (7)
C3A0.9808 (4)0.50221 (10)0.32341 (18)0.0293 (7)
C4A1.1287 (3)0.46614 (11)0.30776 (18)0.0296 (7)
C5A1.1555 (3)0.40898 (11)0.35306 (18)0.0278 (7)
C6A1.0358 (3)0.38671 (10)0.41266 (18)0.0268 (7)
C11A0.7494 (3)0.39730 (11)0.48798 (18)0.0294 (7)
H10.691000.328800.629000.0330*
H30.809700.238400.893700.0380*
H40.558300.287900.941400.0410*
H50.381700.362100.833000.0450*
H60.449800.382100.673800.0430*
H311.004400.097000.491800.0390*
H510.584900.076800.643500.0430*
H610.652900.173800.714200.0370*
H711.047000.245500.776300.0370*
H720.978500.281200.670500.0370*
H2A0.648000.493800.439200.0470*
H4A1.209200.480200.267200.0350*
H6A1.058900.348300.444300.0320*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O210.0376 (11)0.0622 (13)0.0758 (15)−0.0202 (10)0.0272 (11)−0.0216 (12)
O220.0767 (17)0.0939 (18)0.0687 (15)−0.0332 (14)0.0546 (14)−0.0196 (14)
O410.0775 (17)0.0640 (14)0.0585 (14)−0.0200 (12)0.0349 (13)−0.0309 (12)
O420.0637 (14)0.0356 (11)0.0721 (15)−0.0054 (10)0.0135 (12)0.0012 (11)
N10.0292 (10)0.0257 (9)0.0297 (10)−0.0008 (8)0.0120 (9)0.0026 (8)
N210.0322 (12)0.0356 (11)0.0477 (13)−0.0004 (10)0.0212 (11)0.0017 (11)
N410.0363 (13)0.0420 (13)0.0597 (16)−0.0027 (10)0.0132 (12)−0.0135 (12)
C20.0264 (12)0.0207 (10)0.0338 (13)−0.0042 (9)0.0093 (10)−0.0031 (10)
C30.0344 (13)0.0284 (12)0.0306 (13)−0.0009 (10)0.0057 (11)0.0015 (10)
C40.0373 (14)0.0405 (14)0.0283 (13)−0.0064 (11)0.0133 (11)−0.0037 (11)
C50.0367 (14)0.0408 (14)0.0391 (14)0.0066 (12)0.0164 (12)−0.0033 (12)
C60.0341 (13)0.0337 (13)0.0412 (14)0.0074 (11)0.0121 (12)0.0054 (11)
C110.0219 (11)0.0259 (11)0.0270 (12)0.0036 (9)0.0055 (9)0.0055 (9)
C210.0223 (11)0.0304 (12)0.0289 (12)0.0020 (9)0.0087 (9)0.0049 (10)
C310.0296 (13)0.0357 (13)0.0335 (13)0.0058 (10)0.0121 (11)−0.0016 (11)
C410.0301 (13)0.0322 (13)0.0440 (15)0.0014 (10)0.0098 (11)−0.0072 (12)
C510.0292 (13)0.0363 (13)0.0455 (15)−0.0065 (11)0.0153 (12)−0.0050 (12)
C610.0277 (12)0.0289 (12)0.0393 (13)0.0007 (10)0.0158 (11)−0.0019 (11)
C710.0284 (12)0.0265 (12)0.0396 (14)−0.0002 (10)0.0123 (11)0.0002 (11)
O2A0.0345 (10)0.0364 (10)0.0512 (11)0.0054 (8)0.0209 (9)0.0012 (8)
O11A0.0406 (10)0.0372 (10)0.0350 (9)−0.0063 (8)0.0169 (8)0.0018 (8)
O12A0.0391 (10)0.0429 (10)0.0475 (11)−0.0027 (8)0.0266 (9)−0.0072 (9)
O31A0.0479 (12)0.0313 (10)0.0636 (13)0.0026 (9)0.0108 (11)0.0013 (9)
O32A0.101 (2)0.0591 (14)0.0630 (15)−0.0014 (13)0.0434 (15)0.0203 (12)
O51A0.0386 (11)0.0653 (13)0.0604 (13)0.0026 (9)0.0311 (10)−0.0076 (11)
O52A0.0403 (11)0.0374 (11)0.0861 (16)0.0093 (9)0.0215 (11)0.0020 (11)
N31A0.0385 (12)0.0389 (12)0.0385 (12)−0.0018 (10)0.0087 (10)0.0062 (10)
N51A0.0249 (11)0.0425 (13)0.0475 (13)0.0001 (9)0.0133 (10)−0.0094 (11)
C1A0.0254 (11)0.0286 (11)0.0228 (11)−0.0030 (9)0.0073 (9)−0.0043 (10)
C2A0.0258 (12)0.0325 (12)0.0255 (12)−0.0010 (10)0.0082 (10)−0.0051 (10)
C3A0.0316 (13)0.0290 (12)0.0274 (12)−0.0018 (10)0.0074 (10)0.0015 (10)
C4A0.0262 (12)0.0385 (13)0.0265 (12)−0.0069 (10)0.0113 (10)−0.0032 (11)
C5A0.0226 (11)0.0327 (12)0.0288 (12)−0.0007 (10)0.0076 (10)−0.0091 (10)
C6A0.0265 (12)0.0273 (12)0.0266 (11)−0.0024 (9)0.0065 (10)−0.0019 (10)
C11A0.0285 (12)0.0352 (13)0.0264 (12)−0.0073 (10)0.0104 (10)−0.0061 (10)

Geometric parameters (Å, °)

O21—N211.215 (3)C11—C611.393 (3)
O22—N211.213 (3)C11—C711.518 (3)
O41—N411.211 (3)C21—C311.381 (3)
O42—N411.235 (3)C31—C411.381 (4)
O2A—C2A1.321 (3)C41—C511.377 (4)
O11A—C11A1.253 (3)C51—C611.383 (4)
O12A—C11A1.262 (3)C3—H30.9300
O31A—N31A1.206 (3)C4—H40.9300
O32A—N31A1.222 (3)C5—H50.9300
O51A—N51A1.228 (3)C6—H60.9300
O52A—N51A1.219 (3)C31—H310.9300
O2A—H2A0.9300C51—H510.9300
N1—C61.343 (4)C61—H610.9300
N1—C21.344 (3)C71—H710.9700
N21—C211.481 (3)C71—H720.9700
N41—C411.470 (3)C1A—C6A1.377 (3)
N1—H10.9100C1A—C11A1.512 (3)
N31A—C3A1.460 (3)C1A—C2A1.412 (3)
N51A—C5A1.459 (3)C2A—C3A1.417 (4)
C2—C711.511 (3)C3A—C4A1.373 (4)
C2—C31.374 (3)C4A—C5A1.372 (3)
C3—C41.383 (4)C5A—C6A1.387 (3)
C4—C51.375 (4)C4A—H4A0.9300
C5—C61.374 (4)C6A—H6A0.9300
C11—C211.405 (3)
C2A—O2A—H2A106.00C5—C4—H4120.00
C2—N1—C6122.9 (2)C3—C4—H4120.00
O21—N21—C21118.4 (2)C6—C5—H5121.00
O22—N21—C21117.5 (2)C4—C5—H5120.00
O21—N21—O22124.1 (3)N1—C6—H6120.00
O41—N41—O42123.9 (2)C5—C6—H6120.00
O42—N41—C41117.8 (2)C41—C31—H31121.00
O41—N41—C41118.3 (2)C21—C31—H31121.00
C6—N1—H1121.00C41—C51—H51121.00
C2—N1—H1116.00C61—C51—H51121.00
O31A—N31A—O32A122.6 (2)C11—C61—H61119.00
O31A—N31A—C3A119.7 (2)C51—C61—H61119.00
O32A—N31A—C3A117.6 (2)H71—C71—H72108.00
O51A—N51A—C5A117.7 (2)C2—C71—H72109.00
O52A—N51A—C5A118.2 (2)C11—C71—H71109.00
O51A—N51A—O52A124.1 (2)C2—C71—H71109.00
C3—C2—C71124.5 (2)C11—C71—H72109.00
N1—C2—C3118.6 (2)C2A—C1A—C6A120.9 (2)
N1—C2—C71116.9 (2)C2A—C1A—C11A119.2 (2)
C2—C3—C4119.8 (2)C6A—C1A—C11A119.9 (2)
C3—C4—C5120.0 (2)O2A—C2A—C3A122.1 (2)
C4—C5—C6119.0 (3)C1A—C2A—C3A116.8 (2)
N1—C6—C5119.7 (2)O2A—C2A—C1A121.0 (2)
C61—C11—C71120.3 (2)N31A—C3A—C2A120.7 (2)
C21—C11—C71123.7 (2)C2A—C3A—C4A122.2 (2)
C21—C11—C61116.0 (2)N31A—C3A—C4A117.0 (2)
N21—C21—C11121.4 (2)C3A—C4A—C5A118.7 (2)
C11—C21—C31123.3 (2)N51A—C5A—C6A118.9 (2)
N21—C21—C31115.3 (2)C4A—C5A—C6A121.7 (2)
C21—C31—C41117.2 (2)N51A—C5A—C4A119.4 (2)
N41—C41—C51118.4 (2)C1A—C6A—C5A119.6 (2)
N41—C41—C31119.1 (2)O11A—C11A—C1A117.7 (2)
C31—C41—C51122.6 (2)O12A—C11A—C1A117.3 (2)
C41—C51—C61118.2 (2)O11A—C11A—O12A125.0 (2)
C11—C61—C51122.6 (2)C3A—C4A—H4A121.00
C2—C71—C11113.96 (18)C5A—C4A—H4A121.00
C2—C3—H3120.00C1A—C6A—H6A120.00
C4—C3—H3120.00C5A—C6A—H6A120.00
C6—N1—C2—C32.1 (3)C71—C11—C61—C51−175.1 (2)
C6—N1—C2—C71−177.0 (2)C21—C11—C71—C2160.2 (2)
C2—N1—C6—C5−1.4 (4)C61—C11—C71—C2−20.4 (3)
O21—N21—C21—C1129.4 (3)C11—C21—C31—C41−4.3 (4)
O21—N21—C21—C31−149.7 (2)N21—C21—C31—C41174.8 (2)
O22—N21—C21—C11−151.4 (2)C21—C31—C41—N41−174.5 (2)
O22—N21—C21—C3129.5 (3)C21—C31—C41—C514.2 (4)
O41—N41—C41—C31−27.8 (4)C31—C41—C51—C610.0 (4)
O41—N41—C41—C51153.4 (3)N41—C41—C51—C61178.7 (2)
O42—N41—C41—C31149.9 (2)C41—C51—C61—C11−4.5 (4)
O42—N41—C41—C51−28.8 (4)C6A—C1A—C2A—O2A−179.2 (2)
O31A—N31A—C3A—C2A24.4 (4)C6A—C1A—C2A—C3A1.4 (3)
O31A—N31A—C3A—C4A−153.3 (2)C11A—C1A—C2A—O2A−1.1 (3)
O32A—N31A—C3A—C2A−159.1 (2)C11A—C1A—C2A—C3A179.5 (2)
O32A—N31A—C3A—C4A23.2 (3)C2A—C1A—C6A—C5A−3.0 (3)
O51A—N51A—C5A—C4A−3.5 (3)C11A—C1A—C6A—C5A178.9 (2)
O51A—N51A—C5A—C6A176.6 (2)C2A—C1A—C11A—O11A175.0 (2)
O52A—N51A—C5A—C4A177.6 (2)C2A—C1A—C11A—O12A−5.8 (3)
O52A—N51A—C5A—C6A−2.3 (3)C6A—C1A—C11A—O11A−6.9 (3)
C71—C2—C3—C4178.3 (2)C6A—C1A—C11A—O12A172.3 (2)
N1—C2—C71—C11−94.0 (2)O2A—C2A—C3A—N31A4.4 (4)
C3—C2—C71—C1186.9 (3)O2A—C2A—C3A—C4A−178.0 (2)
N1—C2—C3—C4−0.8 (4)C1A—C2A—C3A—N31A−176.2 (2)
C2—C3—C4—C5−1.1 (4)C1A—C2A—C3A—C4A1.4 (3)
C3—C4—C5—C61.7 (4)N31A—C3A—C4A—C5A175.2 (2)
C4—C5—C6—N1−0.5 (4)C2A—C3A—C4A—C5A−2.5 (4)
C61—C11—C21—N21−178.8 (2)C3A—C4A—C5A—N51A−179.0 (2)
C61—C11—C21—C310.2 (3)C3A—C4A—C5A—C6A0.9 (4)
C71—C11—C21—N210.6 (3)N51A—C5A—C6A—C1A−178.2 (2)
C71—C11—C21—C31179.6 (2)C4A—C5A—C6A—C1A1.9 (4)
C21—C11—C61—C514.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O11A0.911.722.627 (3)172
O2A—H2A···O12A0.931.612.476 (3)152
C3—H3···O11Ai0.932.483.246 (3)140
C5—H5···O31Aii0.932.563.051 (4)114
C6—H6···O31Aii0.932.483.020 (4)117
C51—H51···O51Aiii0.932.553.137 (4)122
C61—H61···O51Aiii0.932.543.141 (3)123
C71—H72···O11A0.972.553.247 (3)129

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2219).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Naumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264–7275. [PubMed]
  • Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc.124, 8540–8541. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Scherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem.100, 16175–16186.
  • Seff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406–1415.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Cotton, M. S., Wermuth, U. D. & Boyd, S. E. (2010). Acta Cryst. C66, o252–o255. [PubMed]
  • Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem.55, 349–356.
  • Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem.56, 707–713.
  • Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem.60, 264–267.
  • Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o1184–o1185. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography