PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2026.
Published online 2010 July 14. doi:  10.1107/S1600536810026723
PMCID: PMC3007334

N′-[(E)-2-Chloro-5-nitro­benzyl­idene]-2-nitro­benzohydrazide

Abstract

In the title compound, C14H9ClN4O5, the mol­ecule exists in a trans geometry with respect to the methyl­idene unit. The dihedral angle between the two substituted benzene rings is 62.7 (2)°. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds generate R 2 2(8) loops.

Related literature

For a related structure and background references, see: Liu (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2026-scheme1.jpg

Experimental

Crystal data

  • C14H9ClN4O5
  • M r = 348.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2026-efi1.jpg
  • a = 7.432 (3) Å
  • b = 9.296 (4) Å
  • c = 12.404 (5) Å
  • α = 77.621 (5)°
  • β = 87.674 (6)°
  • γ = 76.271 (5)°
  • V = 813.1 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.949, T max = 0.956
  • 4610 measured reflections
  • 2863 independent reflections
  • 1878 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.207
  • S = 1.00
  • 2863 reflections
  • 220 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.26 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026723/hb5545sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026723/hb5545Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Guangdong Pharmaceutical University Young Teachers’ Fund and the Ten Hundred Thousand Project of the Bureau of Education of Guangdong Province, China.

supplementary crystallographic information

Comment

Recently, the author has reported a hydrazone compound (Liu, 2010). As a further study on these compounds, in the present work, a new hydrazone compound is reported.

In the title compound (Fig. 1), the hydrazone molecule exists in a trans geometry with respect to the methylidene unit. The dihedral angle between the two substituted benzene rings is 62.7 (2)°. The O1/N3/O2 nitro plane forms a dihedral angle of 3.7 (2)° with the C1-C6 benzene ring. The O4/N4/O5 nitro plane forms a dihedral angle of 33.9 (2)° with the C9-C14 benzene ring. In the crystal structure, adjacent two molecules are linked through two N—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Experimental

2-Chloro-5-nitrobenzaldehyde (1.0 mmol, 185 mg) and 2-nitrobenzohydrazide (1.0 mmol, 181 mg) were mixed in 50 mL methanol. The mixture was stirred at ambient temperature for 2 h and filtered. Colorless blocks of (I) were formed by slow evaporation of the filtrate for 5 d.

Refinement

The amino hydrogen atom was located in an electronic density map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å. Other hydrogen atoms were placed in calculated positions, with C—H = 0.93 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The structure contains solvent accessible VOIDS of 70 Å3, which might accord a disordered water molecule.

Figures

Fig. 1.
Molecular structure of (I) with 30% probability displacement ellipsoids.
Fig. 2.
Packing structure of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9ClN4O5Z = 2
Mr = 348.70F(000) = 356
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.432 (3) ÅCell parameters from 1380 reflections
b = 9.296 (4) Åθ = 2.3–25.3°
c = 12.404 (5) ŵ = 0.27 mm1
α = 77.621 (5)°T = 298 K
β = 87.674 (6)°Block, colorless
γ = 76.271 (5)°0.20 × 0.18 × 0.17 mm
V = 813.1 (6) Å3

Data collection

Bruker SMART CCD diffractometer2863 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 25.5°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.949, Tmax = 0.956k = −11→11
4610 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.1395P)2] where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 1.26 e Å3
1 restraintΔρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.26862 (17)0.10161 (9)0.90359 (9)0.0893 (4)
N10.0650 (3)0.5612 (3)0.73068 (18)0.0489 (6)
N20.0178 (4)0.5714 (3)0.62253 (19)0.0572 (7)
N30.2718 (5)0.6264 (5)1.1036 (3)0.0751 (9)
N40.1665 (4)0.8525 (3)0.6682 (3)0.0640 (8)
O10.3378 (7)0.5946 (5)1.1976 (3)0.1348 (14)
O20.2136 (6)0.7508 (4)1.0530 (3)0.1165 (13)
O3−0.1109 (4)0.7087 (3)0.46232 (17)0.0702 (7)
O40.2419 (4)0.8013 (3)0.5910 (3)0.0858 (8)
O50.2494 (4)0.8607 (3)0.7502 (3)0.0919 (9)
C10.2110 (4)0.4041 (3)0.8957 (2)0.0463 (7)
C20.2716 (5)0.2577 (3)0.9592 (3)0.0577 (8)
C30.3337 (6)0.2313 (4)1.0669 (3)0.0731 (10)
H30.37500.13271.10680.088*
C40.3341 (5)0.3520 (4)1.1146 (3)0.0669 (9)
H40.37370.33631.18720.080*
C50.2751 (4)0.4952 (4)1.0530 (2)0.0534 (7)
C60.2128 (4)0.5243 (3)0.9448 (2)0.0503 (7)
H60.17260.62350.90560.060*
C70.1508 (4)0.4296 (3)0.7812 (2)0.0516 (7)
H70.17520.34940.74480.062*
C8−0.0717 (4)0.7033 (3)0.5596 (2)0.0513 (7)
C9−0.1414 (4)0.8379 (3)0.6106 (2)0.0466 (7)
C10−0.0355 (4)0.9083 (3)0.6632 (2)0.0515 (7)
C11−0.1089 (5)1.0291 (4)0.7086 (3)0.0655 (9)
H11−0.03301.07130.74420.079*
C12−0.3001 (6)1.0897 (4)0.7013 (3)0.0679 (9)
H12−0.35301.17420.73040.081*
C13−0.4087 (5)1.0227 (4)0.6508 (3)0.0640 (9)
H13−0.53621.06150.64650.077*
C14−0.3317 (4)0.8988 (3)0.6062 (2)0.0539 (7)
H14−0.40820.85500.57260.065*
H20.059 (5)0.490 (3)0.593 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1262 (9)0.0423 (5)0.0944 (8)−0.0049 (5)−0.0208 (6)−0.0162 (4)
N10.0592 (14)0.0462 (13)0.0415 (12)−0.0080 (11)−0.0069 (10)−0.0131 (10)
N20.0807 (18)0.0518 (14)0.0384 (13)−0.0060 (13)−0.0138 (12)−0.0157 (11)
N30.085 (2)0.097 (3)0.0616 (18)−0.0388 (19)0.0027 (15)−0.0368 (18)
N40.0637 (18)0.0618 (17)0.0698 (18)−0.0260 (14)−0.0047 (15)−0.0076 (14)
O10.209 (4)0.147 (3)0.076 (2)−0.064 (3)−0.030 (2)−0.052 (2)
O20.184 (4)0.0693 (19)0.104 (2)−0.020 (2)−0.030 (2)−0.0391 (18)
O30.1005 (17)0.0660 (14)0.0406 (12)−0.0051 (12)−0.0208 (11)−0.0157 (10)
O40.0632 (16)0.102 (2)0.0902 (19)−0.0215 (14)0.0062 (14)−0.0149 (16)
O50.0805 (18)0.100 (2)0.103 (2)−0.0297 (15)−0.0357 (15)−0.0219 (16)
C10.0505 (16)0.0424 (15)0.0448 (15)−0.0063 (12)−0.0044 (12)−0.0107 (12)
C20.0676 (19)0.0459 (16)0.0570 (18)−0.0073 (14)−0.0055 (14)−0.0107 (14)
C30.089 (2)0.060 (2)0.0555 (19)−0.0032 (18)−0.0098 (17)0.0065 (16)
C40.077 (2)0.078 (2)0.0410 (16)−0.0118 (18)−0.0085 (15)−0.0075 (16)
C50.0533 (17)0.069 (2)0.0445 (16)−0.0210 (15)0.0005 (12)−0.0176 (14)
C60.0578 (17)0.0491 (16)0.0453 (15)−0.0152 (13)−0.0042 (13)−0.0092 (12)
C70.0641 (18)0.0454 (16)0.0440 (15)−0.0049 (13)−0.0057 (13)−0.0145 (12)
C80.0601 (17)0.0535 (17)0.0407 (15)−0.0123 (14)−0.0090 (13)−0.0099 (13)
C90.0554 (17)0.0442 (15)0.0399 (14)−0.0148 (13)−0.0071 (12)−0.0032 (11)
C100.0583 (18)0.0464 (16)0.0503 (16)−0.0168 (13)−0.0103 (13)−0.0043 (12)
C110.087 (3)0.0514 (18)0.066 (2)−0.0263 (18)−0.0113 (17)−0.0159 (15)
C120.091 (3)0.0481 (18)0.064 (2)−0.0095 (17)−0.0033 (18)−0.0172 (15)
C130.063 (2)0.064 (2)0.0571 (18)−0.0017 (16)−0.0046 (15)−0.0086 (16)
C140.0613 (19)0.0528 (17)0.0459 (15)−0.0110 (14)−0.0114 (13)−0.0073 (13)

Geometric parameters (Å, °)

Cl1—C21.740 (3)C3—H30.9300
N1—C71.277 (4)C4—C51.364 (5)
N1—N21.378 (3)C4—H40.9300
N2—C81.341 (4)C5—C61.388 (4)
N2—H20.898 (10)C6—H60.9300
N3—O21.180 (5)C7—H70.9300
N3—O11.232 (5)C8—C91.496 (4)
N3—C51.481 (4)C9—C141.392 (4)
N4—O41.217 (4)C9—C101.394 (4)
N4—O51.235 (4)C10—C111.353 (4)
N4—C101.467 (4)C11—C121.398 (5)
O3—C81.241 (3)C11—H110.9300
C1—C61.384 (4)C12—C131.371 (5)
C1—C21.398 (4)C12—H120.9300
C1—C71.460 (4)C13—C141.376 (5)
C2—C31.383 (5)C13—H130.9300
C3—C41.377 (5)C14—H140.9300
C7—N1—N2115.0 (2)C1—C6—H6120.3
C8—N2—N1121.2 (2)C5—C6—H6120.3
C8—N2—H2120 (3)N1—C7—C1120.4 (2)
N1—N2—H2118 (3)N1—C7—H7119.8
O2—N3—O1124.6 (4)C1—C7—H7119.8
O2—N3—C5120.1 (3)O3—C8—N2119.6 (3)
O1—N3—C5115.3 (4)O3—C8—C9120.4 (3)
O4—N4—O5124.2 (3)N2—C8—C9119.7 (2)
O4—N4—C10117.8 (3)C14—C9—C10116.3 (3)
O5—N4—C10118.0 (3)C14—C9—C8117.0 (3)
C6—C1—C2117.7 (3)C10—C9—C8126.7 (3)
C6—C1—C7121.1 (3)C11—C10—C9123.4 (3)
C2—C1—C7121.2 (2)C11—C10—N4117.4 (3)
C3—C2—C1122.0 (3)C9—C10—N4119.2 (3)
C3—C2—Cl1117.9 (2)C10—C11—C12119.1 (3)
C1—C2—Cl1120.0 (2)C10—C11—H11120.5
C4—C3—C2119.6 (3)C12—C11—H11120.5
C4—C3—H3120.2C13—C12—C11119.0 (3)
C2—C3—H3120.2C13—C12—H12120.5
C5—C4—C3118.6 (3)C11—C12—H12120.5
C5—C4—H4120.7C12—C13—C14121.0 (3)
C3—C4—H4120.7C12—C13—H13119.5
C4—C5—C6122.8 (3)C14—C13—H13119.5
C4—C5—N3119.3 (3)C13—C14—C9121.2 (3)
C6—C5—N3117.9 (3)C13—C14—H14119.4
C1—C6—C5119.3 (3)C9—C14—H14119.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (1)2.05 (1)2.937 (3)170 (4)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5545).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, H. (2010). Acta Cryst. E66, o1582. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography