PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1918–o1919.
Published online 2010 July 3. doi:  10.1107/S1600536810025493
PMCID: PMC3007333

Bis{(E)-N′-[2,4-bis(trifluoro­meth­yl)benzyl­idene]isonicotinohydrazide} monohydrate

Abstract

The asymmetric unit of the title compound, 2C15H9F6N3O·H2O, contains two independent Schiff base mol­ecules and one water mol­ecule. Both Schiff base mol­ecules exist in an E configuration with respect to the C=N double bonds and the dihedral angles between the benzene and the pyridine rings in the two mol­ecules are 17.53 (12) and 20.62 (12)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds into infinite one-dimensional chains along the a axis. In addition, inter­molecular O—H(...)N, O—H(...)F, C—H(...)F and C—H(...)O hydrogen bonds further link these chains into a three-dimensional network. Weak π–π inter­actions with centroid–centroid distances in the range 3.6495 (17)–3.7092 (16) Å are also observed.

Related literature

For applications of isoniazid derivatives, see: Janin (2007 [triangle]); Maccari et al. (2005 [triangle]); Slayden & Barry (2000 [triangle]); Kahwa et al. (1986 [triangle]). For the preparation of the title compound, see: Lourenco et al. (2008 [triangle]). For related structures, see: Naveenkumar et al. (2009 [triangle], 2010a [triangle],b [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1918-scheme1.jpg

Experimental

Crystal data

  • 2C15H9F6N3O·H2O
  • M r = 740.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1918-efi1.jpg
  • a = 8.2487 (18) Å
  • b = 26.649 (6) Å
  • c = 14.779 (3) Å
  • β = 109.076 (10)°
  • V = 3070.3 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 100 K
  • 0.59 × 0.17 × 0.13 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.914, T max = 0.980
  • 29846 measured reflections
  • 7030 independent reflections
  • 5239 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.162
  • S = 1.02
  • 7030 reflections
  • 460 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025493/lh5074sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025493/lh5074Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK and CSY are grateful to USM for USM Fellowships. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound.

The asymmetric unit consists of two Schiff base molecules [A and B] and one water molecule (Fig. 1). The geometric parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b). The molecules exist in E configurations with respect to the C7A═N3A and C7B═N3B double bonds. The dihedral angles between the benzene ring and the pyridine ring in molecules A and B are 17.53 (12) and 20.62 (12)°, respectively.

In the crystal structure, the molecules are linked by intermolecular N2A—H2NA···O1B, C7A—H7A···O1B, N2B—H2NB···O1A and C7B—H7B···O1A hydrogen bonds (Table 1) into infinite one-dimensional chains along the a axis. Intermolecular O1W—H1WB···N1B, O1W—H1WA···F2B, C9A—H9A···F2B, C2B—H2B···F1A and C12B—H12B···O1W hydrogen bonds further link these chains into a three-dimensional network (Fig. 2, Table 1). Weak π–π interactions are also observed with Cg1···Cg1vi = 3.6529 (17) Å, Cg2···Cg3v = 3.7092 (16) Å and Cg4···Cg4iv = 3.6495 (17) Å [Cg1, Cg2, Cg3 and Cg4 are centroids of C1A/C2A/N1A/C3A/C4A/C5A, C8A–C13A, C1B/C2B/N1B/C3B/C4B/C5B and C8B–C13B rings, respectively; symmetry code: (iv) 1 - x,2 - y,1 - z; (v) 1 + x,3/2 - y,1/2 + z; (vi) 1 - x,2 - y,-z].

Experimental

The isoniazid derivative was prepared following the procedure by Lourenco et al., 2008. The title compound was prepared by reaction between the 2,4-bis(trifluoro-methyl)benzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1–3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and diethyl ether, afforded the pure derivative. The colourless single-crystals suitable for X-ray analysis was obtained by recrystalization from ethanol.

Refinement

Hydrogen atoms were positioned geometrically [N-H = 0.86Å, O-H = 0.84Å and C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). The H atoms of the water molecule were included in positions which give ideal geometry for hydrogen bonds.

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels and 30% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound, viewed along the a axis, showing the molecules are linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

2C15H9F6N3O·H2OF(000) = 1496
Mr = 740.52Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8714 reflections
a = 8.2487 (18) Åθ = 2.7–30.0°
b = 26.649 (6) ŵ = 0.16 mm1
c = 14.779 (3) ÅT = 100 K
β = 109.076 (10)°Needle, colourless
V = 3070.3 (11) Å30.59 × 0.17 × 0.13 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer7030 independent reflections
Radiation source: fine-focus sealed tube5239 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.914, Tmax = 0.980k = −34→34
29846 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0688P)2 + 3.4968P] where P = (Fo2 + 2Fc2)/3
7030 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F1A1.3386 (2)0.67680 (7)0.46754 (17)0.0730 (6)
F2A1.2638 (3)0.64562 (7)0.32715 (17)0.0769 (7)
F3A1.1394 (2)0.62210 (6)0.42543 (13)0.0516 (4)
F4A0.53442 (19)0.72504 (6)0.14372 (11)0.0436 (4)
F5A0.57719 (19)0.66261 (5)0.24013 (13)0.0453 (4)
F6A0.49749 (17)0.73324 (5)0.27950 (11)0.0372 (3)
O1A0.83293 (19)0.95521 (6)0.18897 (12)0.0307 (4)
N1A0.2710 (3)1.04566 (8)0.05493 (16)0.0387 (5)
N2A0.6377 (2)0.89622 (6)0.19410 (14)0.0276 (4)
H2NA0.53150.88880.18280.033*
N3A0.7647 (2)0.86131 (6)0.23267 (14)0.0266 (4)
C1A0.3807 (3)0.96185 (8)0.07092 (17)0.0285 (5)
H1A0.36140.92810.05520.034*
C2A0.2523 (3)0.99707 (9)0.03320 (18)0.0346 (5)
H2A0.14810.9862−0.00930.041*
C3A0.4233 (3)1.06017 (8)0.11472 (19)0.0366 (5)
H3A0.43791.09390.13120.044*
C4A0.5604 (3)1.02840 (8)0.15360 (17)0.0298 (5)
H4A0.66521.04070.19300.036*
C5A0.5379 (3)0.97783 (7)0.13241 (15)0.0237 (4)
C6A0.6844 (3)0.94253 (7)0.17445 (16)0.0246 (4)
C7A0.7099 (3)0.81749 (8)0.24256 (17)0.0286 (5)
H7A0.59280.81110.22410.034*
C8A0.8339 (3)0.77756 (8)0.28328 (16)0.0265 (4)
C9A1.0062 (3)0.78936 (8)0.32681 (17)0.0292 (5)
H9A1.04080.82270.33050.035*
C10A1.1269 (3)0.75252 (9)0.36459 (17)0.0330 (5)
H10A1.24180.76090.39340.040*
C11A1.0749 (3)0.70289 (9)0.35908 (18)0.0339 (5)
C12A0.9041 (3)0.69018 (8)0.31789 (18)0.0328 (5)
H12A0.87020.65680.31580.039*
C13A0.7835 (3)0.72720 (8)0.27974 (17)0.0279 (5)
C14A1.2037 (3)0.66203 (10)0.3951 (2)0.0460 (7)
C15A0.5987 (3)0.71217 (8)0.23552 (18)0.0324 (5)
F1B0.9350 (3)1.07132 (10)0.53923 (16)0.0896 (8)
F2B0.7582 (4)1.12296 (12)0.5572 (2)0.1222 (12)
F3B0.8325 (3)1.12608 (8)0.43264 (16)0.0815 (7)
F4B0.0666 (2)1.04165 (6)0.38057 (14)0.0563 (5)
F5B0.1590 (3)1.11618 (6)0.37229 (16)0.0672 (6)
F6B0.0833 (2)1.06925 (6)0.24796 (14)0.0566 (5)
O1B0.3278 (2)0.84289 (7)0.17464 (18)0.0525 (6)
N1B−0.2255 (3)0.75716 (8)0.00655 (16)0.0357 (5)
N2B0.1387 (2)0.89800 (7)0.19927 (14)0.0291 (4)
H2NB0.03380.90610.19090.035*
N3B0.2726 (2)0.92809 (7)0.25030 (14)0.0309 (4)
C1B−0.1252 (3)0.84074 (8)0.05378 (17)0.0298 (5)
H1B−0.14840.87500.05050.036*
C2B−0.2489 (3)0.80662 (9)0.00503 (18)0.0337 (5)
H2B−0.35580.8190−0.03130.040*
C3B−0.0697 (3)0.74026 (9)0.05774 (19)0.0360 (5)
H3B−0.04980.70590.05940.043*
C4B0.0630 (3)0.77130 (8)0.10816 (19)0.0335 (5)
H4B0.16990.75800.14200.040*
C5B0.0346 (3)0.82255 (8)0.10771 (17)0.0280 (5)
C6B0.1793 (3)0.85540 (8)0.16307 (19)0.0326 (5)
C7B0.2332 (3)0.96770 (9)0.28583 (17)0.0311 (5)
H7B0.11930.97570.27690.037*
C8B0.3734 (3)1.00068 (9)0.34169 (17)0.0322 (5)
C9B0.5420 (3)0.98353 (10)0.36821 (17)0.0359 (5)
H9B0.56340.95090.35300.043*
C10B0.6783 (3)1.01409 (11)0.41673 (18)0.0418 (6)
H10B0.79041.00240.43250.050*
C11B0.6459 (4)1.06192 (11)0.44127 (18)0.0448 (7)
C12B0.4801 (4)1.07976 (10)0.41867 (19)0.0434 (6)
H12B0.46001.11190.43700.052*
C13B0.3433 (3)1.04929 (9)0.36825 (18)0.0372 (6)
C14B0.7939 (5)1.09561 (14)0.4928 (2)0.0605 (9)
C15B0.1644 (4)1.06914 (10)0.3428 (2)0.0480 (7)
O1W0.5352 (5)0.82564 (14)0.4292 (3)0.1324 (16)
H1WA0.44870.84090.43310.199*
H1WB0.60410.80200.45120.199*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F1A0.0290 (9)0.0562 (11)0.1136 (17)0.0121 (8)−0.0043 (9)0.0302 (11)
F2A0.0817 (15)0.0613 (12)0.1128 (17)0.0463 (11)0.0660 (14)0.0371 (11)
F3A0.0366 (9)0.0357 (8)0.0809 (12)0.0138 (7)0.0172 (8)0.0275 (8)
F4A0.0327 (8)0.0454 (8)0.0458 (8)−0.0101 (6)0.0034 (6)0.0051 (7)
F5A0.0328 (8)0.0190 (6)0.0825 (11)−0.0040 (6)0.0165 (8)0.0044 (7)
F6A0.0224 (7)0.0308 (7)0.0593 (9)0.0017 (5)0.0146 (6)0.0057 (6)
O1A0.0182 (8)0.0218 (7)0.0493 (10)−0.0021 (6)0.0074 (7)0.0024 (7)
N1A0.0335 (11)0.0314 (10)0.0519 (13)0.0132 (9)0.0148 (10)0.0085 (9)
N2A0.0159 (8)0.0177 (8)0.0468 (11)0.0019 (6)0.0071 (8)0.0052 (7)
N3A0.0191 (9)0.0193 (8)0.0388 (10)0.0037 (7)0.0061 (7)0.0040 (7)
C1A0.0211 (10)0.0203 (10)0.0425 (12)−0.0008 (8)0.0083 (9)0.0023 (9)
C2A0.0223 (11)0.0314 (12)0.0477 (14)0.0049 (9)0.0083 (10)0.0068 (10)
C3A0.0455 (15)0.0180 (10)0.0490 (14)0.0064 (10)0.0191 (12)0.0015 (9)
C4A0.0308 (12)0.0186 (10)0.0400 (12)−0.0023 (8)0.0115 (10)−0.0004 (9)
C5A0.0182 (10)0.0167 (9)0.0370 (11)−0.0001 (7)0.0099 (8)0.0028 (8)
C6A0.0189 (10)0.0170 (9)0.0362 (11)−0.0005 (7)0.0069 (8)−0.0004 (8)
C7A0.0179 (10)0.0207 (10)0.0447 (12)0.0010 (8)0.0068 (9)0.0049 (9)
C8A0.0216 (10)0.0208 (10)0.0358 (11)0.0020 (8)0.0077 (9)0.0046 (8)
C9A0.0231 (11)0.0235 (10)0.0389 (12)−0.0009 (8)0.0072 (9)0.0040 (9)
C10A0.0212 (11)0.0335 (12)0.0415 (13)0.0030 (9)0.0065 (9)0.0081 (10)
C11A0.0275 (12)0.0298 (11)0.0458 (13)0.0087 (9)0.0137 (10)0.0113 (10)
C12A0.0277 (12)0.0217 (10)0.0502 (14)0.0053 (9)0.0147 (10)0.0079 (9)
C13A0.0217 (11)0.0219 (10)0.0400 (12)0.0022 (8)0.0101 (9)0.0049 (9)
C14A0.0290 (13)0.0408 (14)0.0705 (19)0.0131 (11)0.0193 (13)0.0205 (13)
C15A0.0267 (11)0.0197 (10)0.0501 (14)−0.0001 (8)0.0116 (10)0.0053 (9)
F1B0.0616 (14)0.1076 (18)0.0721 (14)−0.0456 (13)−0.0158 (11)0.0014 (12)
F2B0.109 (2)0.157 (3)0.117 (2)−0.089 (2)0.0587 (17)−0.099 (2)
F3B0.0739 (14)0.0757 (14)0.0837 (14)−0.0487 (12)0.0104 (11)0.0088 (11)
F4B0.0472 (10)0.0400 (9)0.0904 (13)−0.0042 (7)0.0346 (9)−0.0085 (8)
F5B0.0679 (13)0.0311 (8)0.1054 (16)−0.0032 (8)0.0319 (11)−0.0196 (9)
F6B0.0495 (10)0.0355 (8)0.0743 (12)0.0027 (7)0.0057 (9)0.0018 (8)
O1B0.0177 (9)0.0292 (9)0.1087 (17)−0.0001 (7)0.0179 (9)−0.0146 (10)
N1B0.0288 (10)0.0309 (10)0.0492 (12)−0.0074 (8)0.0151 (9)−0.0048 (9)
N2B0.0140 (8)0.0239 (9)0.0475 (11)−0.0008 (7)0.0072 (8)−0.0026 (8)
N3B0.0197 (9)0.0273 (9)0.0421 (11)−0.0050 (7)0.0054 (8)−0.0004 (8)
C1B0.0224 (11)0.0239 (10)0.0436 (13)0.0035 (8)0.0113 (9)−0.0010 (9)
C2B0.0213 (11)0.0340 (12)0.0441 (13)0.0002 (9)0.0083 (9)−0.0028 (10)
C3B0.0341 (13)0.0216 (11)0.0552 (15)−0.0009 (9)0.0185 (11)−0.0001 (10)
C4B0.0250 (11)0.0232 (11)0.0517 (14)0.0024 (9)0.0116 (10)0.0016 (10)
C5B0.0199 (10)0.0219 (10)0.0446 (13)−0.0003 (8)0.0135 (9)−0.0011 (9)
C6B0.0188 (11)0.0226 (10)0.0548 (14)0.0003 (8)0.0098 (10)0.0011 (10)
C7B0.0221 (11)0.0294 (11)0.0411 (12)−0.0028 (9)0.0094 (9)−0.0010 (9)
C8B0.0294 (12)0.0321 (12)0.0349 (12)−0.0089 (9)0.0100 (9)−0.0013 (9)
C9B0.0284 (12)0.0429 (13)0.0355 (12)−0.0084 (10)0.0091 (10)−0.0034 (10)
C10B0.0317 (13)0.0570 (17)0.0349 (13)−0.0158 (12)0.0085 (10)−0.0050 (11)
C11B0.0447 (16)0.0560 (17)0.0330 (12)−0.0245 (13)0.0118 (11)−0.0063 (11)
C12B0.0554 (17)0.0361 (13)0.0421 (14)−0.0186 (12)0.0206 (12)−0.0072 (11)
C13B0.0402 (14)0.0325 (12)0.0407 (13)−0.0098 (10)0.0157 (11)−0.0028 (10)
C14B0.062 (2)0.066 (2)0.0557 (18)−0.0345 (17)0.0222 (17)−0.0206 (16)
C15B0.0508 (17)0.0283 (12)0.0659 (19)−0.0044 (11)0.0207 (14)−0.0073 (12)
O1W0.119 (3)0.109 (3)0.134 (3)0.069 (2)−0.006 (2)−0.044 (2)

Geometric parameters (Å, °)

F1A—C14A1.326 (4)F2B—C14B1.306 (4)
F2A—C14A1.331 (4)F3B—C14B1.317 (4)
F3A—C14A1.331 (3)F4B—C15B1.339 (3)
F4A—C15A1.330 (3)F5B—C15B1.333 (3)
F5A—C15A1.337 (3)F6B—C15B1.341 (4)
F6A—C15A1.338 (3)O1B—C6B1.226 (3)
O1A—C6A1.221 (3)N1B—C2B1.331 (3)
N1A—C2A1.331 (3)N1B—C3B1.339 (3)
N1A—C3A1.336 (3)N2B—C6B1.343 (3)
N2A—C6A1.352 (3)N2B—N3B1.374 (3)
N2A—N3A1.377 (2)N2B—H2NB0.8600
N2A—H2NA0.8600N3B—C7B1.268 (3)
N3A—C7A1.277 (3)C1B—C2B1.381 (3)
C1A—C5A1.385 (3)C1B—C5B1.386 (3)
C1A—C2A1.388 (3)C1B—H1B0.9300
C1A—H1A0.9300C2B—H2B0.9300
C2A—H2A0.9300C3B—C4B1.380 (3)
C3A—C4A1.379 (3)C3B—H3B0.9300
C3A—H3A0.9300C4B—C5B1.385 (3)
C4A—C5A1.382 (3)C4B—H4B0.9300
C4A—H4A0.9300C5B—C6B1.490 (3)
C5A—C6A1.496 (3)C7B—C8B1.472 (3)
C7A—C8A1.462 (3)C7B—H7B0.9300
C7A—H7A0.9300C8B—C9B1.393 (4)
C8A—C9A1.392 (3)C8B—C13B1.399 (3)
C8A—C13A1.401 (3)C9B—C10B1.383 (3)
C9A—C10A1.380 (3)C9B—H9B0.9300
C9A—H9A0.9300C10B—C11B1.375 (4)
C10A—C11A1.385 (3)C10B—H10B0.9300
C10A—H10A0.9300C11B—C12B1.382 (4)
C11A—C12A1.382 (3)C11B—C14B1.506 (4)
C11A—C14A1.493 (3)C12B—C13B1.392 (4)
C12A—C13A1.384 (3)C12B—H12B0.9300
C12A—H12A0.9300C13B—C15B1.496 (4)
C13A—C15A1.503 (3)O1W—H1WA0.8400
F1B—C14B1.313 (5)O1W—H1WB0.8400
C2A—N1A—C3A116.8 (2)C6B—N2B—N3B116.85 (18)
C6A—N2A—N3A118.29 (17)C6B—N2B—H2NB121.6
C6A—N2A—H2NA120.9N3B—N2B—H2NB121.6
N3A—N2A—H2NA120.9C7B—N3B—N2B116.41 (19)
C7A—N3A—N2A114.54 (18)C2B—C1B—C5B118.1 (2)
C5A—C1A—C2A118.9 (2)C2B—C1B—H1B120.9
C5A—C1A—H1A120.5C5B—C1B—H1B120.9
C2A—C1A—H1A120.5N1B—C2B—C1B124.4 (2)
N1A—C2A—C1A123.2 (2)N1B—C2B—H2B117.8
N1A—C2A—H2A118.4C1B—C2B—H2B117.8
C1A—C2A—H2A118.4N1B—C3B—C4B123.3 (2)
N1A—C3A—C4A124.3 (2)N1B—C3B—H3B118.3
N1A—C3A—H3A117.8C4B—C3B—H3B118.3
C4A—C3A—H3A117.8C3B—C4B—C5B119.0 (2)
C3A—C4A—C5A118.3 (2)C3B—C4B—H4B120.5
C3A—C4A—H4A120.9C5B—C4B—H4B120.5
C5A—C4A—H4A120.9C4B—C5B—C1B118.4 (2)
C4A—C5A—C1A118.4 (2)C4B—C5B—C6B118.2 (2)
C4A—C5A—C6A119.25 (19)C1B—C5B—C6B123.4 (2)
C1A—C5A—C6A122.32 (18)O1B—C6B—N2B122.8 (2)
O1A—C6A—N2A123.70 (19)O1B—C6B—C5B120.0 (2)
O1A—C6A—C5A121.77 (18)N2B—C6B—C5B117.14 (19)
N2A—C6A—C5A114.53 (18)N3B—C7B—C8B118.0 (2)
N3A—C7A—C8A119.11 (19)N3B—C7B—H7B121.0
N3A—C7A—H7A120.4C8B—C7B—H7B121.0
C8A—C7A—H7A120.4C9B—C8B—C13B118.5 (2)
C9A—C8A—C13A118.67 (19)C9B—C8B—C7B119.4 (2)
C9A—C8A—C7A119.81 (19)C13B—C8B—C7B122.1 (2)
C13A—C8A—C7A121.51 (19)C10B—C9B—C8B121.3 (3)
C10A—C9A—C8A121.3 (2)C10B—C9B—H9B119.3
C10A—C9A—H9A119.4C8B—C9B—H9B119.3
C8A—C9A—H9A119.4C11B—C10B—C9B119.2 (3)
C9A—C10A—C11A119.2 (2)C11B—C10B—H10B120.4
C9A—C10A—H10A120.4C9B—C10B—H10B120.4
C11A—C10A—H10A120.4C10B—C11B—C12B121.1 (2)
C12A—C11A—C10A120.8 (2)C10B—C11B—C14B119.4 (3)
C12A—C11A—C14A118.9 (2)C12B—C11B—C14B119.4 (3)
C10A—C11A—C14A120.3 (2)C11B—C12B—C13B119.6 (3)
C11A—C12A—C13A119.9 (2)C11B—C12B—H12B120.2
C11A—C12A—H12A120.1C13B—C12B—H12B120.2
C13A—C12A—H12A120.1C12B—C13B—C8B120.2 (3)
C12A—C13A—C8A120.2 (2)C12B—C13B—C15B119.3 (2)
C12A—C13A—C15A118.6 (2)C8B—C13B—C15B120.5 (2)
C8A—C13A—C15A121.20 (19)F2B—C14B—F1B105.4 (3)
F1A—C14A—F3A106.7 (2)F2B—C14B—F3B108.0 (3)
F1A—C14A—F2A106.6 (2)F1B—C14B—F3B106.8 (3)
F3A—C14A—F2A106.2 (2)F2B—C14B—C11B111.3 (3)
F1A—C14A—C11A112.5 (2)F1B—C14B—C11B113.8 (3)
F3A—C14A—C11A112.8 (2)F3B—C14B—C11B111.2 (3)
F2A—C14A—C11A111.6 (2)F5B—C15B—F4B106.8 (2)
F4A—C15A—F5A106.9 (2)F5B—C15B—F6B106.3 (2)
F4A—C15A—F6A106.45 (19)F4B—C15B—F6B105.9 (2)
F5A—C15A—F6A105.99 (19)F5B—C15B—C13B112.7 (2)
F4A—C15A—C13A112.60 (19)F4B—C15B—C13B112.4 (2)
F5A—C15A—C13A111.95 (19)F6B—C15B—C13B112.2 (2)
F6A—C15A—C13A112.5 (2)H1WA—O1W—H1WB145.0
C2B—N1B—C3B116.7 (2)
C6A—N2A—N3A—C7A−175.0 (2)C6B—N2B—N3B—C7B−178.6 (2)
C3A—N1A—C2A—C1A1.3 (4)C3B—N1B—C2B—C1B−1.3 (4)
C5A—C1A—C2A—N1A−1.7 (4)C5B—C1B—C2B—N1B0.3 (4)
C2A—N1A—C3A—C4A0.8 (4)C2B—N1B—C3B—C4B0.6 (4)
N1A—C3A—C4A—C5A−2.4 (4)N1B—C3B—C4B—C5B1.1 (4)
C3A—C4A—C5A—C1A2.0 (3)C3B—C4B—C5B—C1B−2.1 (4)
C3A—C4A—C5A—C6A−179.5 (2)C3B—C4B—C5B—C6B179.6 (2)
C2A—C1A—C5A—C4A−0.1 (3)C2B—C1B—C5B—C4B1.4 (4)
C2A—C1A—C5A—C6A−178.6 (2)C2B—C1B—C5B—C6B179.6 (2)
N3A—N2A—C6A—O1A0.0 (3)N3B—N2B—C6B—O1B0.6 (4)
N3A—N2A—C6A—C5A179.77 (18)N3B—N2B—C6B—C5B179.9 (2)
C4A—C5A—C6A—O1A−33.3 (3)C4B—C5B—C6B—O1B29.3 (4)
C1A—C5A—C6A—O1A145.2 (2)C1B—C5B—C6B—O1B−148.9 (3)
C4A—C5A—C6A—N2A146.9 (2)C4B—C5B—C6B—N2B−150.0 (2)
C1A—C5A—C6A—N2A−34.6 (3)C1B—C5B—C6B—N2B31.8 (4)
N2A—N3A—C7A—C8A−179.7 (2)N2B—N3B—C7B—C8B179.5 (2)
N3A—C7A—C8A—C9A12.0 (3)N3B—C7B—C8B—C9B−11.4 (3)
N3A—C7A—C8A—C13A−168.1 (2)N3B—C7B—C8B—C13B167.7 (2)
C13A—C8A—C9A—C10A1.1 (4)C13B—C8B—C9B—C10B−2.3 (4)
C7A—C8A—C9A—C10A−179.0 (2)C7B—C8B—C9B—C10B176.9 (2)
C8A—C9A—C10A—C11A−0.1 (4)C8B—C9B—C10B—C11B1.7 (4)
C9A—C10A—C11A—C12A−1.1 (4)C9B—C10B—C11B—C12B0.3 (4)
C9A—C10A—C11A—C14A177.1 (2)C9B—C10B—C11B—C14B−179.1 (3)
C10A—C11A—C12A—C13A1.4 (4)C10B—C11B—C12B—C13B−1.5 (4)
C14A—C11A—C12A—C13A−176.8 (2)C14B—C11B—C12B—C13B177.9 (3)
C11A—C12A—C13A—C8A−0.4 (4)C11B—C12B—C13B—C8B0.8 (4)
C11A—C12A—C13A—C15A−180.0 (2)C11B—C12B—C13B—C15B−179.1 (3)
C9A—C8A—C13A—C12A−0.8 (3)C9B—C8B—C13B—C12B1.0 (4)
C7A—C8A—C13A—C12A179.2 (2)C7B—C8B—C13B—C12B−178.1 (2)
C9A—C8A—C13A—C15A178.7 (2)C9B—C8B—C13B—C15B−179.0 (2)
C7A—C8A—C13A—C15A−1.2 (4)C7B—C8B—C13B—C15B1.8 (4)
C12A—C11A—C14A—F1A−151.1 (2)C10B—C11B—C14B—F2B−142.1 (3)
C10A—C11A—C14A—F1A30.6 (4)C12B—C11B—C14B—F2B38.5 (4)
C12A—C11A—C14A—F3A−30.4 (4)C10B—C11B—C14B—F1B−23.1 (4)
C10A—C11A—C14A—F3A151.4 (3)C12B—C11B—C14B—F1B157.5 (3)
C12A—C11A—C14A—F2A89.1 (3)C10B—C11B—C14B—F3B97.5 (4)
C10A—C11A—C14A—F2A−89.1 (3)C12B—C11B—C14B—F3B−81.9 (4)
C12A—C13A—C15A—F4A−120.3 (2)C12B—C13B—C15B—F5B0.8 (4)
C8A—C13A—C15A—F4A60.1 (3)C8B—C13B—C15B—F5B−179.1 (2)
C12A—C13A—C15A—F5A0.2 (3)C12B—C13B—C15B—F4B−120.0 (3)
C8A—C13A—C15A—F5A−179.4 (2)C8B—C13B—C15B—F4B60.1 (3)
C12A—C13A—C15A—F6A119.4 (2)C12B—C13B—C15B—F6B120.8 (3)
C8A—C13A—C15A—F6A−60.2 (3)C8B—C13B—C15B—F6B−59.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1B0.862.052.856 (3)156
N2B—H2NB···O1Ai0.862.102.908 (3)155
C7A—H7A···O1B0.932.233.055 (3)147
C7B—H7B···O1Ai0.932.363.158 (3)144
C2B—H2B···F1Aii0.932.523.294 (3)141
C9A—H9A···F2Biii0.932.413.162 (4)138
C12B—H12B···O1Wiv0.932.583.408 (5)149
O1W—H1WA···F2Biv0.842.012.845 (5)180
O1W—H1WB···N1Bv0.842.092.932 (5)180

Symmetry codes: (i) x−1, y, z; (ii) x−2, −y+3/2, z−1/2; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+2, −z+1; (v) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5074).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [PubMed]
  • Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem.43, 1344–1347. [PubMed]
  • Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [PubMed]
  • Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541. [PMC free article] [PubMed]
  • Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, o579. [PMC free article] [PubMed]
  • Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235–o1236. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography