PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1952.
Published online 2010 July 7. doi:  10.1107/S1600536810025638
PMCID: PMC3007330

(E)-1-(2-Bromo­phen­yl)-3-(2,5-dimeth­oxy­phen­yl)prop-2-en-1-one

Abstract

The title compound, C17H15BrO3, is a chalcone with the 2-bromo­phenyl and 2,5-dimeth­oxy­phenyl rings bonded at opposite ends of a propene group. The dihedral angle between the mean planes of the ortho-bromo and ortho,meta-dimeth­oxy-substituted benzene rings is 77.3 (1)°. The dihedral angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 2-bromo­phenyl and 2,5-dimeth­oxy­phenyl rings are 58.6 (1) and 30.7 (4)°, respectively. Weak C—H(...)O, C—H(...)Br and π–π stacking inter­molecular inter­actions [centroid–centroid distance = 3.650 (2) Å] are present in the structure.

Related literature

For the radical quenching properties of included phenol groups, see: Dhar (1981 [triangle]). For their anti­cancer activity, see Dimmock et al. (1999 [triangle]). For related structures, see: Ng et al. (2006 [triangle]); Rosli et al. (2006 [triangle]). For standard bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1952-scheme1.jpg

Experimental

Crystal data

  • C17H15BrO3
  • M r = 347.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1952-efi1.jpg
  • a = 7.7643 (9) Å
  • b = 9.7006 (11) Å
  • c = 10.2722 (10) Å
  • α = 72.901 (10)°
  • β = 78.487 (9)°
  • γ = 86.359 (9)°
  • V = 724.59 (14) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 3.93 mm−1
  • T = 110 K
  • 0.54 × 0.26 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.179, T max = 0.635
  • 4759 measured reflections
  • 2835 independent reflections
  • 2749 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.146
  • S = 1.05
  • 2835 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 2.51 e Å−3
  • Δρmin = −1.11 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025638/fb2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025638/fb2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KV thanks the UGC for the sanction of a Junior Research Fellowship and for an SAP Chemical grant. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful biological properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). The crystal structures of closely related chalcones, viz., 1-(4-bromophenyl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one, (Rosli et al., 2006); 1-(4-bromophenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (Ng et al., 2006) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of these flavanoid analogs, this new bromo chalcone C17H15BrO3 has been synthesized (Fig. 1) and its crystal structure is reported.

The title compound, C17H15BrO3, is a chalcone with 2-bromophenyl and 2,5-dimethoxyphenyl rings bonded at opposite ends of a propene group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and ortho- meta-diimethoxy substituted rings is 77.3 (1)°. The angles between the mean plane of the prop-2-ene-1-one group (C1/C7/O1/C8) and the mean planes of the benzene rings in the 2-bromophenyl (C1–C6)and 2,5-dimethoxyphenyl rings (C10—C15) are 58.6 (1)° and 30.7 (4)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). While no classical hydrogen bonds are present, weak C3—H3···O2, C4—H4···Br1 (Tab. 1) and π-electron ring - π-electron ring interactions [Cg1···Cg1i = 3.650 (2) Å; i: -x, 1 - y, 1 - z; Cg1 is the centroid of the ring C10—C15] are observed which contribute to the stability of crystal packing (Fig. 3).

Experimental

A 50% (wt) KOH solution (50 ml) was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 2,5-dimethoxy benzaldehyde (0.01 mol, 1.66 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals (triangular plates with their longest edges 0.3 - 0.5 mm long) were grown from ethyl acetate by slow evaporation method and yield of the compound was 75% (m.p. 355–357 K). Analytical data: Found (Calculated): C %: 58.76 (58.81%); H%: 4.31 (4.35%).

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms were constrained in the riding motion approximation. Caryl—H = 0.95 Å, with Uĩso(H) = 1.20Ueq(C). Cmethyl—H = 0.98 Å, with Uiso(H)=1.50Ueq(C).

Figures

Fig. 1.
Reaction scheme for C17H15BrO3.
Fig. 2.
Title molecule, showing the atom labelling scheme with 50% probability displacement ellipsoids.
Fig. 3.
Packing diagram of the title compound, C17H15BrO3 viewed down the a axis. Dashed lines indicate a weak C—H···O intermolecular hydrogen bond interaction.

Crystal data

C17H15BrO3Z = 2
Mr = 347.20F(000) = 352
Triclinic, P1Dx = 1.591 Mg m3
Hall symbol: -P 1Melting point = 355–357 K
a = 7.7643 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.7006 (11) ÅCell parameters from 4418 reflections
c = 10.2722 (10) Åθ = 4.6–73.9°
α = 72.901 (10)°µ = 3.93 mm1
β = 78.487 (9)°T = 110 K
γ = 86.359 (9)°Triangular plate, colorless
V = 724.59 (14) Å30.54 × 0.26 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur diffractometer2835 independent reflections
Radiation source: Enhance (Cu) X-ray Source2749 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 4.6°
ω scansh = −9→9
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)k = −12→11
Tmin = 0.179, Tmax = 0.635l = −12→10
4759 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.146H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1005P)2 + 1.9956P] where P = (Fo2 + 2Fc2)/3
2835 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = −1.11 e Å3
58 constraints

Special details

Experimental. IR data (KBr) ν cm-1: 2832 cm-1, 2949 cm-1, 2987 cm-1 (C—H al. str), 3453 cm-1 (C—H ar. str) 1680 cm-1 (C=O), 1593 cm-1 (C=C); 1231 cm-1 (C—O—C).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.28123 (4)1.19671 (4)−0.00743 (4)0.01849 (18)
O10.1583 (4)1.1329 (3)0.3257 (3)0.0208 (6)
O20.4450 (3)0.5470 (3)0.2755 (3)0.0161 (5)
O30.0011 (4)0.4011 (3)0.7884 (3)0.0177 (5)
C10.4421 (5)1.0666 (3)0.2299 (4)0.0129 (7)
C20.4701 (5)1.1455 (4)0.0894 (4)0.0135 (7)
C30.6379 (5)1.1881 (4)0.0155 (4)0.0160 (7)
H30.65481.2397−0.08020.019*
C40.7801 (5)1.1552 (4)0.0819 (4)0.0194 (8)
H40.89451.18570.03180.023*
C50.7563 (5)1.0772 (4)0.2223 (4)0.0203 (8)
H50.85361.05600.26840.024*
C60.5884 (5)1.0312 (4)0.2936 (4)0.0164 (7)
H60.57290.97430.38780.020*
C70.2612 (5)1.0331 (4)0.3178 (4)0.0138 (7)
C80.2125 (5)0.8849 (4)0.3976 (4)0.0138 (7)
H80.10940.86970.46760.017*
C90.3058 (4)0.7685 (4)0.3774 (3)0.0119 (6)
H90.40860.78480.30700.014*
C100.2606 (4)0.6188 (3)0.4558 (3)0.0103 (6)
C110.3385 (4)0.5059 (4)0.4034 (3)0.0116 (6)
C120.3018 (5)0.3629 (4)0.4806 (4)0.0141 (7)
H120.35350.28650.44540.017*
C130.1900 (5)0.3323 (4)0.6086 (4)0.0149 (7)
H130.16760.23480.66170.018*
C140.1098 (5)0.4435 (4)0.6606 (4)0.0128 (7)
C150.1450 (4)0.5854 (4)0.5843 (3)0.0116 (6)
H150.09030.66110.61930.014*
C160.5285 (5)0.4359 (4)0.2187 (4)0.0184 (7)
H160.60430.47980.12910.028*
H16B0.43880.37720.20570.028*
H16C0.59960.37470.28250.028*
C17−0.0777 (5)0.5153 (4)0.8422 (4)0.0174 (7)
H17−0.15530.47440.93170.026*
H17B−0.14630.57750.77700.026*
H17C0.01440.57210.85480.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0173 (3)0.0181 (3)0.0190 (3)−0.00149 (16)−0.00464 (16)−0.00259 (16)
O10.0213 (13)0.0084 (12)0.0265 (14)0.0010 (10)0.0049 (11)−0.0020 (10)
O20.0204 (13)0.0086 (11)0.0171 (12)−0.0009 (9)0.0051 (10)−0.0060 (9)
O30.0238 (13)0.0101 (12)0.0131 (12)−0.0010 (10)0.0029 (10)0.0021 (9)
C10.0176 (17)0.0045 (14)0.0157 (16)−0.0038 (12)0.0021 (13)−0.0041 (12)
C20.0129 (16)0.0104 (15)0.0158 (16)−0.0017 (12)−0.0002 (13)−0.0032 (13)
C30.0171 (17)0.0103 (15)0.0167 (16)−0.0030 (13)0.0031 (13)−0.0016 (13)
C40.0165 (17)0.0133 (17)0.0248 (19)−0.0052 (13)0.0034 (14)−0.0038 (14)
C50.0188 (18)0.0118 (16)0.030 (2)−0.0014 (13)−0.0069 (15)−0.0042 (15)
C60.0220 (18)0.0076 (15)0.0176 (17)−0.0005 (13)−0.0011 (14)−0.0021 (13)
C70.0173 (17)0.0081 (15)0.0139 (15)−0.0034 (12)0.0015 (13)−0.0023 (12)
C80.0147 (16)0.0076 (15)0.0149 (16)−0.0041 (12)0.0044 (13)−0.0007 (12)
C90.0127 (15)0.0114 (16)0.0106 (15)−0.0036 (12)0.0004 (12)−0.0025 (12)
C100.0115 (15)0.0074 (15)0.0125 (15)−0.0011 (11)−0.0028 (12)−0.0029 (12)
C110.0109 (15)0.0113 (16)0.0124 (15)−0.0002 (12)−0.0010 (12)−0.0040 (12)
C120.0162 (16)0.0078 (15)0.0194 (17)0.0016 (12)−0.0041 (13)−0.0053 (13)
C130.0180 (17)0.0061 (15)0.0178 (17)−0.0027 (12)−0.0046 (13)0.0022 (12)
C140.0145 (16)0.0090 (15)0.0117 (15)−0.0025 (12)−0.0029 (12)0.0028 (12)
C150.0126 (15)0.0089 (15)0.0127 (15)−0.0013 (12)−0.0016 (12)−0.0022 (12)
C160.0189 (17)0.0139 (17)0.0225 (18)0.0011 (13)0.0030 (14)−0.0107 (14)
C170.0183 (17)0.0167 (17)0.0140 (16)−0.0010 (13)0.0019 (13)−0.0025 (13)

Geometric parameters (Å, °)

Br1—C21.893 (4)C8—H80.9500
O1—C71.227 (4)C9—C101.465 (4)
O2—C111.367 (4)C9—H90.9500
O2—C161.433 (4)C10—C151.402 (5)
O3—C141.375 (4)C10—C111.410 (5)
O3—C171.430 (4)C11—C121.396 (5)
C1—C61.397 (5)C12—C131.384 (5)
C1—C21.401 (5)C12—H120.9500
C1—C71.507 (5)C13—C141.399 (5)
C2—C31.391 (5)C13—H130.9500
C3—C41.383 (6)C14—C151.383 (5)
C3—H30.9500C15—H150.9500
C4—C51.399 (6)C16—H160.9800
C4—H40.9500C16—H16B0.9800
C5—C61.392 (5)C16—H16C0.9800
C5—H50.9500C17—H170.9800
C6—H60.9500C17—H17B0.9800
C7—C81.461 (4)C17—H17C0.9800
C8—C91.348 (5)
C11—O2—C16117.8 (3)C15—C10—C9121.1 (3)
C14—O3—C17115.6 (3)C11—C10—C9119.5 (3)
C6—C1—C2117.9 (3)O2—C11—C12124.4 (3)
C6—C1—C7118.9 (3)O2—C11—C10115.8 (3)
C2—C1—C7122.8 (3)C12—C11—C10119.8 (3)
C3—C2—C1121.2 (3)C13—C12—C11120.0 (3)
C3—C2—Br1117.5 (3)C13—C12—H12120.0
C1—C2—Br1121.3 (3)C11—C12—H12120.0
C4—C3—C2119.8 (3)C12—C13—C14120.7 (3)
C4—C3—H3120.1C12—C13—H13119.6
C2—C3—H3120.1C14—C13—H13119.6
C3—C4—C5120.4 (3)O3—C14—C15124.5 (3)
C3—C4—H4119.8O3—C14—C13115.9 (3)
C5—C4—H4119.8C15—C14—C13119.6 (3)
C6—C5—C4119.1 (4)C14—C15—C10120.6 (3)
C6—C5—H5120.4C14—C15—H15119.7
C4—C5—H5120.4C10—C15—H15119.7
C5—C6—C1121.5 (3)O2—C16—H16109.5
C5—C6—H6119.2O2—C16—H16B109.5
C1—C6—H6119.2H16—C16—H16B109.5
O1—C7—C8120.6 (3)O2—C16—H16C109.5
O1—C7—C1118.9 (3)H16—C16—H16C109.5
C8—C7—C1120.5 (3)H16B—C16—H16C109.5
C9—C8—C7123.6 (3)O3—C17—H17109.5
C9—C8—H8118.2O3—C17—H17B109.5
C7—C8—H8118.2H17—C17—H17B109.5
C8—C9—C10124.9 (3)O3—C17—H17C109.5
C8—C9—H9117.6H17—C17—H17C109.5
C10—C9—H9117.6H17B—C17—H17C109.5
C15—C10—C11119.3 (3)
C6—C1—C2—C3−0.4 (5)C8—C9—C10—C11163.4 (3)
C7—C1—C2—C3172.8 (3)C16—O2—C11—C12−1.9 (5)
C6—C1—C2—Br1179.1 (2)C16—O2—C11—C10179.4 (3)
C7—C1—C2—Br1−7.7 (5)C15—C10—C11—O2177.9 (3)
C1—C2—C3—C4−1.4 (5)C9—C10—C11—O2−4.0 (5)
Br1—C2—C3—C4179.1 (3)C15—C10—C11—C12−0.9 (5)
C2—C3—C4—C51.1 (5)C9—C10—C11—C12177.2 (3)
C3—C4—C5—C61.1 (6)O2—C11—C12—C13−179.1 (3)
C4—C5—C6—C1−3.0 (5)C10—C11—C12—C13−0.4 (5)
C2—C1—C6—C52.6 (5)C11—C12—C13—C141.4 (5)
C7—C1—C6—C5−170.8 (3)C17—O3—C14—C15−0.1 (5)
C6—C1—C7—O1117.6 (4)C17—O3—C14—C13178.8 (3)
C2—C1—C7—O1−55.5 (5)C12—C13—C14—O3179.9 (3)
C6—C1—C7—C8−59.4 (4)C12—C13—C14—C15−1.1 (5)
C2—C1—C7—C8127.4 (4)O3—C14—C15—C10178.7 (3)
O1—C7—C8—C9168.8 (4)C13—C14—C15—C10−0.2 (5)
C1—C7—C8—C9−14.3 (5)C11—C10—C15—C141.2 (5)
C7—C8—C9—C10179.9 (3)C9—C10—C15—C14−176.8 (3)
C8—C9—C10—C15−18.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···Br1i0.952.953.834 (4)155
C3—H3···O2ii0.952.623.463 (5)148

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2201).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds New York: John Wiley.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1570–o1572.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A., Dharmaprakash, S. M. & Karthikeyan, M. S. (2006). Acta Cryst. E62, o1460–o1462.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography