PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2188.
Published online 2010 July 31. doi:  10.1107/S1600536810030199
PMCID: PMC3007329

Benzene-1,3-diol–1,4-diaza­bicyclo­[2.2.2]octane (1/1)

Abstract

There are two independent but virtually identical mol­ecules of each component in the asymmetric unit of the title 1:1 adduct, C6H12N2·C6H6O2. In the crystal, the constituents are connected into a supra­molecular chain along the b axis by O—H(...)N hydrogen bonds. Weak C—H(...)O bonds cross-link the chains.

Related literature

For related studies on co-crystal/adduct formation, see: Broker & Tiekink (2007 [triangle]); Broker et al. (2008 [triangle]); Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2188-scheme1.jpg

Experimental

Crystal data

  • C6H12N2·C6H6O2
  • M r = 222.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2188-efi1.jpg
  • a = 9.3620 (19) Å
  • b = 23.645 (5) Å
  • c = 11.072 (2) Å
  • β = 112.64 (3)°
  • V = 2262.1 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 98 K
  • 0.40 × 0.25 × 0.07 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.423, T max = 1.000
  • 11918 measured reflections
  • 3973 independent reflections
  • 3355 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.157
  • S = 1.00
  • 3973 reflections
  • 301 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030199/hb5588sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030199/hb5588Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of on-going studies into co-crystallization experiments with N-containing molecules (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al. 2010), the co-crystallization of benzene-1,3-diol and 1,4-diazabicyclo[2.2.2]octane (dabco) was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The crystallographic asymmetric unit of (I) comprises two independent benzene-1,3-diol molecules, Figs 1 and 2, and two independent dabco molecules, Figs 3 and 4. The molecules associate via O–H···N hydrogen bonds with each benzene-1,3-diol molecule bridging two independent dabco molecules. This results in the formation of a supramolecular chain along the b axis, Fig. 5 and Table 1. Chains are consolidated in the crystal structure by C–H···O contacts, Fig. 6 and Table 1.

Experimental

Colourless prisms of (I) were isolated from the 1/1 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich, 0.18 mmol) and benzene-1,3-diol (ACROS, 0.18 mmol) in acetone/ethanol solution, m. pt. 513–517 K

Refinement

The C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of the first independent benzene-1,3-diol molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Molecular structure of the second independent benzene-1,3-diol molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 3.
Molecular structure of the first independent 1,4-diazabicyclo[2.2.2]octane molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 4.
Molecular structure of the second independent 1,4-diazabicyclo[2.2.2]octane molecule in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 5.
Supramolecular chain along the b axis in (I) mediated by O–H···N hydrogen bonding (orange dashed lines).
Fig. 6.
View in projection down the a axis of the unit-cell contents of (I). The O–H···N hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.

Crystal data

C6H12N2·C6H6O2F(000) = 960
Mr = 222.28Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10564 reflections
a = 9.3620 (19) Åθ = 2.0–40.2°
b = 23.645 (5) ŵ = 0.09 mm1
c = 11.072 (2) ÅT = 98 K
β = 112.64 (3)°Prism, colourless
V = 2262.1 (8) Å30.40 × 0.25 × 0.07 mm
Z = 8

Data collection

Rigaku AFC12K/SATURN724 diffractometer3973 independent reflections
Radiation source: fine-focus sealed tube3355 reflections with I > 2σ(I)
graphiteRint = 0.049
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = −8→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −25→28
Tmin = 0.423, Tmax = 1.000l = −13→13
11918 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0661P)2 + 2.685P] where P = (Fo2 + 2Fc2)/3
3973 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6822 (2)1.16554 (7)0.36932 (18)0.0301 (5)
H1O0.648 (4)1.1955 (8)0.326 (3)0.045*
O20.6063 (2)0.97031 (7)0.37749 (18)0.0314 (5)
H2O0.562 (4)0.9413 (9)0.335 (3)0.047*
O30.0808 (2)0.41271 (7)0.41406 (17)0.0263 (4)
H3O0.051 (4)0.4413 (9)0.364 (2)0.039*
O40.1800 (2)0.21654 (7)0.42386 (17)0.0266 (4)
H4O0.149 (4)0.1873 (8)0.377 (3)0.040*
N10.4071 (3)0.76680 (8)0.2317 (2)0.0228 (5)
N20.4791 (3)0.87151 (8)0.2746 (2)0.0219 (5)
N30.0069 (3)0.01097 (8)0.22198 (19)0.0205 (5)
N40.0848 (3)0.11358 (8)0.30117 (19)0.0202 (5)
C10.2920 (3)0.80228 (10)0.1308 (3)0.0269 (6)
H1A0.18920.79760.13560.032*
H1B0.28380.79010.04280.032*
C20.3406 (3)0.86513 (10)0.1519 (2)0.0245 (6)
H2A0.36390.87890.07700.029*
H2B0.25460.88810.15680.029*
C30.5626 (3)0.77703 (10)0.2309 (3)0.0262 (6)
H3A0.56220.76780.14350.031*
H3B0.63910.75220.29610.031*
C40.6094 (3)0.83966 (10)0.2637 (3)0.0269 (6)
H4A0.70050.84200.34730.032*
H4B0.63780.85640.19410.032*
C50.4101 (4)0.78343 (10)0.3614 (3)0.0275 (6)
H5A0.49110.76170.43070.033*
H5B0.30900.77470.36630.033*
C60.4438 (4)0.84720 (10)0.3833 (2)0.0274 (6)
H6A0.35280.86670.38870.033*
H6B0.53290.85320.46710.033*
C7−0.1050 (3)0.05173 (10)0.1344 (2)0.0240 (6)
H7A−0.20730.04640.13960.029*
H7B−0.11660.04480.04290.029*
C8−0.0488 (3)0.11313 (10)0.1737 (2)0.0240 (6)
H8A−0.01810.13030.10570.029*
H8B−0.13420.13600.18030.029*
C90.1632 (3)0.02439 (10)0.2251 (3)0.0241 (6)
H9A0.16090.02370.13500.029*
H9B0.2378−0.00460.27700.029*
C100.2163 (3)0.08326 (10)0.2863 (3)0.0249 (6)
H10A0.30180.07900.37290.030*
H10B0.25520.10550.22960.030*
C110.0090 (3)0.01896 (10)0.3555 (2)0.0239 (6)
H11A0.0908−0.00500.41820.029*
H11B−0.09170.00720.35720.029*
C120.0401 (3)0.08194 (10)0.3972 (2)0.0227 (6)
H12A−0.05430.09890.40190.027*
H12B0.12410.08440.48500.027*
C130.6158 (3)1.11889 (10)0.2989 (3)0.0227 (6)
C140.6381 (3)1.06812 (10)0.3673 (2)0.0237 (6)
H140.69571.06780.45910.028*
C150.5772 (3)1.01792 (10)0.3030 (2)0.0221 (5)
C160.4901 (3)1.01835 (10)0.1682 (2)0.0234 (6)
H160.44800.98430.12310.028*
C170.4663 (3)1.06950 (10)0.1012 (2)0.0245 (6)
H170.40671.07000.00970.029*
C180.5274 (3)1.11975 (10)0.1644 (2)0.0238 (6)
H180.50951.15430.11710.029*
C190.0690 (3)0.36384 (10)0.3458 (2)0.0207 (5)
C200.1297 (3)0.31467 (10)0.4162 (2)0.0219 (5)
H200.17910.31610.50890.026*
C210.1181 (3)0.26331 (10)0.3511 (2)0.0205 (5)
C220.0461 (3)0.26154 (10)0.2147 (2)0.0234 (6)
H220.03770.22670.16960.028*
C23−0.0129 (3)0.31076 (10)0.1454 (2)0.0246 (6)
H23−0.06010.30940.05260.030*
C24−0.0042 (3)0.36198 (10)0.2093 (2)0.0235 (6)
H24−0.04730.39530.16110.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0397 (12)0.0137 (9)0.0289 (10)−0.0014 (8)0.0046 (9)−0.0009 (7)
O20.0439 (13)0.0143 (9)0.0301 (10)−0.0031 (8)0.0077 (10)0.0008 (7)
O30.0398 (12)0.0156 (8)0.0241 (9)0.0037 (8)0.0132 (9)0.0001 (7)
O40.0385 (12)0.0141 (8)0.0251 (9)0.0026 (8)0.0098 (9)0.0011 (7)
N10.0286 (13)0.0180 (10)0.0238 (11)0.0002 (9)0.0124 (10)−0.0012 (8)
N20.0272 (13)0.0181 (10)0.0226 (11)−0.0002 (9)0.0121 (10)0.0000 (8)
N30.0256 (12)0.0182 (10)0.0204 (10)0.0006 (8)0.0118 (9)−0.0003 (8)
N40.0245 (12)0.0172 (10)0.0211 (10)0.0004 (8)0.0114 (9)0.0006 (8)
C10.0279 (15)0.0211 (13)0.0276 (13)0.0016 (11)0.0062 (12)−0.0009 (10)
C20.0265 (15)0.0200 (12)0.0261 (13)0.0020 (10)0.0092 (12)0.0016 (10)
C30.0283 (15)0.0238 (13)0.0289 (13)0.0026 (11)0.0137 (12)−0.0024 (10)
C40.0273 (15)0.0246 (13)0.0326 (14)−0.0010 (11)0.0158 (12)−0.0009 (11)
C50.0372 (17)0.0230 (13)0.0262 (13)−0.0039 (11)0.0164 (13)0.0014 (10)
C60.0378 (17)0.0245 (13)0.0239 (13)−0.0037 (11)0.0162 (13)−0.0026 (10)
C70.0278 (15)0.0211 (12)0.0225 (12)−0.0004 (10)0.0090 (12)0.0010 (10)
C80.0309 (16)0.0184 (12)0.0218 (12)0.0016 (11)0.0091 (12)0.0018 (10)
C90.0290 (15)0.0199 (12)0.0274 (13)0.0017 (11)0.0152 (12)−0.0017 (10)
C100.0248 (15)0.0229 (12)0.0304 (13)−0.0024 (11)0.0145 (12)−0.0044 (10)
C110.0333 (16)0.0190 (12)0.0225 (12)0.0013 (11)0.0142 (12)0.0026 (10)
C120.0281 (15)0.0237 (12)0.0205 (12)0.0008 (10)0.0138 (12)−0.0004 (10)
C130.0221 (14)0.0177 (12)0.0302 (13)0.0000 (10)0.0121 (12)−0.0013 (10)
C140.0249 (14)0.0218 (12)0.0223 (12)0.0035 (10)0.0069 (11)0.0006 (10)
C150.0231 (14)0.0174 (12)0.0288 (13)0.0009 (10)0.0134 (12)0.0005 (10)
C160.0263 (15)0.0199 (12)0.0262 (13)−0.0015 (10)0.0126 (12)−0.0040 (10)
C170.0246 (15)0.0294 (13)0.0221 (12)0.0010 (11)0.0120 (11)−0.0021 (10)
C180.0286 (15)0.0193 (12)0.0258 (13)0.0026 (10)0.0127 (12)0.0037 (10)
C190.0199 (14)0.0183 (12)0.0265 (13)−0.0023 (10)0.0118 (11)−0.0011 (10)
C200.0249 (14)0.0228 (12)0.0205 (12)−0.0013 (10)0.0116 (11)−0.0001 (10)
C210.0231 (14)0.0183 (12)0.0239 (12)−0.0002 (10)0.0132 (11)0.0016 (9)
C220.0285 (15)0.0167 (12)0.0265 (13)−0.0028 (10)0.0123 (12)−0.0037 (10)
C230.0287 (15)0.0252 (13)0.0217 (12)−0.0024 (11)0.0117 (11)−0.0003 (10)
C240.0253 (15)0.0210 (12)0.0253 (13)0.0015 (10)0.0110 (12)0.0032 (10)

Geometric parameters (Å, °)

O1—C131.356 (3)C7—C81.548 (3)
O1—H1O0.85 (2)C7—H7A0.9900
O2—C151.360 (3)C7—H7B0.9900
O2—H2O0.85 (3)C8—H8A0.9900
O3—C191.362 (3)C8—H8B0.9900
O3—H3O0.85 (2)C9—C101.544 (3)
O4—C211.360 (3)C9—H9A0.9900
O4—H4O0.85 (2)C9—H9B0.9900
N1—C11.479 (3)C10—H10A0.9900
N1—C31.479 (4)C10—H10B0.9900
N1—C51.479 (3)C11—C121.553 (3)
N2—C41.477 (3)C11—H11A0.9900
N2—C61.482 (3)C11—H11B0.9900
N2—C21.481 (3)C12—H12A0.9900
N3—C71.478 (3)C12—H12B0.9900
N3—C111.483 (3)C13—C141.392 (3)
N3—C91.484 (3)C13—C181.397 (4)
N4—C81.482 (3)C14—C151.389 (3)
N4—C121.486 (3)C14—H140.9500
N4—C101.488 (3)C15—C161.398 (4)
C1—C21.545 (3)C16—C171.391 (3)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.386 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—H180.9500
C3—C41.547 (3)C19—C201.393 (3)
C3—H3A0.9900C19—C241.399 (3)
C3—H3B0.9900C20—C211.395 (3)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C21—C221.397 (3)
C5—C61.541 (3)C22—C231.387 (3)
C5—H5A0.9900C22—H220.9500
C5—H5B0.9900C23—C241.389 (3)
C6—H6A0.9900C23—H230.9500
C6—H6B0.9900C24—H240.9500
C13—O1—H1O111 (2)C7—C8—H8B109.6
C15—O2—H2O113 (2)H8A—C8—H8B108.1
C19—O3—H3O112 (2)N3—C9—C10110.6 (2)
C21—O4—H4O110 (2)N3—C9—H9A109.5
C1—N1—C3109.6 (2)C10—C9—H9A109.5
C1—N1—C5108.6 (2)N3—C9—H9B109.5
C3—N1—C5108.2 (2)C10—C9—H9B109.5
C4—N2—C6108.5 (2)H9A—C9—H9B108.1
C4—N2—C2109.38 (19)N4—C10—C9110.0 (2)
C6—N2—C2108.4 (2)N4—C10—H10A109.7
C7—N3—C11107.77 (19)C9—C10—H10A109.7
C7—N3—C9108.61 (19)N4—C10—H10B109.7
C11—N3—C9108.3 (2)C9—C10—H10B109.7
C8—N4—C12108.1 (2)H10A—C10—H10B108.2
C8—N4—C10108.79 (19)N3—C11—C12110.32 (19)
C12—N4—C10108.05 (19)N3—C11—H11A109.6
N1—C1—C2110.2 (2)C12—C11—H11A109.6
N1—C1—H1A109.6N3—C11—H11B109.6
C2—C1—H1A109.6C12—C11—H11B109.6
N1—C1—H1B109.6H11A—C11—H11B108.1
C2—C1—H1B109.6N4—C12—C11110.03 (19)
H1A—C1—H1B108.1N4—C12—H12A109.7
N2—C2—C1109.9 (2)C11—C12—H12A109.7
N2—C2—H2A109.7N4—C12—H12B109.7
C1—C2—H2A109.7C11—C12—H12B109.7
N2—C2—H2B109.7H12A—C12—H12B108.2
C1—C2—H2B109.7O1—C13—C14116.7 (2)
H2A—C2—H2B108.2O1—C13—C18123.6 (2)
N1—C3—C4110.2 (2)C14—C13—C18119.7 (2)
N1—C3—H3A109.6C13—C14—C15120.8 (2)
C4—C3—H3A109.6C13—C14—H14119.6
N1—C3—H3B109.6C15—C14—H14119.6
C4—C3—H3B109.6O2—C15—C14116.7 (2)
H3A—C3—H3B108.1O2—C15—C16123.5 (2)
N2—C4—C3109.8 (2)C14—C15—C16119.8 (2)
N2—C4—H4A109.7C17—C16—C15118.9 (2)
C3—C4—H4A109.7C17—C16—H16120.5
N2—C4—H4B109.7C15—C16—H16120.5
C3—C4—H4B109.7C18—C17—C16121.7 (2)
H4A—C4—H4B108.2C18—C17—H17119.2
N1—C5—C6109.8 (2)C16—C17—H17119.1
N1—C5—H5A109.7C17—C18—C13119.1 (2)
C6—C5—H5A109.7C17—C18—H18120.5
N1—C5—H5B109.7C13—C18—H18120.5
C6—C5—H5B109.7O3—C19—C20118.0 (2)
H5A—C5—H5B108.2O3—C19—C24121.8 (2)
N2—C6—C5110.4 (2)C20—C19—C24120.2 (2)
N2—C6—H6A109.6C21—C20—C19120.2 (2)
C5—C6—H6A109.6C21—C20—H20119.9
N2—C6—H6B109.6C19—C20—H20119.9
C5—C6—H6B109.6O4—C21—C20118.1 (2)
H6A—C6—H6B108.1O4—C21—C22122.3 (2)
N3—C7—C8110.4 (2)C20—C21—C22119.6 (2)
N3—C7—H7A109.6C23—C22—C21119.8 (2)
C8—C7—H7A109.6C23—C22—H22120.1
N3—C7—H7B109.6C21—C22—H22120.1
C8—C7—H7B109.6C22—C23—C24121.1 (2)
H7A—C7—H7B108.1C22—C23—H23119.4
N4—C8—C7110.20 (19)C24—C23—H23119.4
N4—C8—H8A109.6C23—C24—C19119.1 (2)
C7—C8—H8A109.6C23—C24—H24120.5
N4—C8—H8B109.6C19—C24—H24120.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.85 (2)1.81 (2)2.639 (3)167 (3)
O2—H2O···N20.85 (3)1.84 (2)2.670 (3)169 (3)
O3—H3O···N3ii0.85 (2)1.88 (2)2.718 (3)171 (2)
O4—H4O···N40.85 (2)1.93 (2)2.763 (3)169 (3)
C23—H23···O1iii0.952.553.330 (3)139

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5588).

References

  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography