PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2130.
Published online 2010 July 31. doi:  10.1107/S1600536810029156
PMCID: PMC3007328

1,5-Dichloro-4,8-dinitro­anthraquinone

Abstract

The ring skeleton of the title compound, C14H4Cl2N2O6, is close to planar (r.m.s. deviation of the carbon atoms 0.091 Å); the nitro goups are twisted with respect to the mean plane of the ring system by 70.8 (1) and 86.7 (2)°. The crystal studied was found to be a merohedral twin, with a domain ratio of 0.61 (8):0.39 (8).

Related literature

For dehydro­sulfurization by using anthraquinone-based catalysts, see: Nagai et al. (1993 [triangle]). For a related structure, see: Armaghan et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2130-scheme1.jpg

Experimental

Crystal data

  • C14H4Cl2N2O6
  • M r = 367.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2130-efi1.jpg
  • a = 5.9596 (6) Å
  • b = 11.3897 (11) Å
  • c = 9.8667 (9) Å
  • β = 93.519 (1)°
  • V = 668.47 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 100 K
  • 0.12 × 0.12 × 0.12 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996 [triangle]) T min = 0.940, T max = 0.940
  • 6510 measured reflections
  • 3028 independent reflections
  • 2779 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.095
  • S = 1.04
  • 3028 reflections
  • 218 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (Flack, 1983 [triangle]), 1402 Friedel pairs
  • Flack parameter: 0.39 (8)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029156/kp2270sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029156/kp2270Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (Scheme I, Fig. 1) belongs to a class of catalysts used for dehydrosulfurisation (Nagai et al., 1993). We have embarked on a study of dehydrosulfurisation, and have recently reported the crysal structure of 1,8-dihydroxy-2,4,5,7-tetranitro-9,10-anthraquinone (Armaghan et al., 2010). These compounds are synthesised by the reaction of fuming nitric acid on the substituted anthraquinone.

Experimental

Fuming nitric acid (10 ml) was added dropwise to a solution of 1,5-dichloroanthraquinone (277 mg, 1 mmol) in concentrated sulfuric acid (5 ml). The mixture was kept at 333 K. After two hours, the mixture was poured into ice (100 g). The organic compound was collected and dried. Crystals suitable for X-ray analysis were obtained by recrystallisation from toluene; m.p. > 540 K.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.
Displacement ellipsoid plot (Barbour, 2001) of I at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C14H4Cl2N2O6F(000) = 368
Mr = 367.09Dx = 1.824 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2429 reflections
a = 5.9596 (6) Åθ = 2.7–28.3°
b = 11.3897 (11) ŵ = 0.53 mm1
c = 9.8667 (9) ÅT = 100 K
β = 93.519 (1)°Cube, yellow
V = 668.47 (11) Å30.12 × 0.12 × 0.12 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer3028 independent reflections
Radiation source: fine-focus sealed tube2779 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS, Sheldrick, 1996)h = −7→7
Tmin = 0.940, Tmax = 0.940k = −14→14
6510 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095w = 1/[σ2(Fo2) + (0.0477P)2 + 0.339P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3028 reflectionsΔρmax = 0.54 e Å3
218 parametersΔρmin = −0.34 e Å3
1 restraintAbsolute structure: Flack (Flack, 1983) parameter from 1402 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.39 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.62144 (12)0.00005 (6)0.17540 (8)0.02356 (19)
Cl20.36066 (13)0.69418 (6)0.31405 (8)0.0250 (2)
O10.0933 (4)0.3072 (2)0.6211 (2)0.0271 (5)
O2−0.1258 (4)0.3417 (2)0.4440 (2)0.0277 (5)
O30.2920 (4)0.4726 (2)0.4346 (2)0.0339 (6)
O41.1628 (4)0.3759 (2)0.0667 (2)0.0280 (5)
O50.9158 (4)0.3677 (3)−0.1002 (2)0.0404 (7)
O60.8065 (5)0.2199 (2)0.1277 (3)0.0548 (9)
N10.0447 (4)0.3022 (2)0.4997 (3)0.0147 (5)
N20.9756 (4)0.3942 (2)0.0136 (3)0.0163 (5)
C10.4613 (5)0.0953 (3)0.2635 (3)0.0142 (6)
C20.2957 (5)0.0447 (3)0.3375 (3)0.0198 (6)
H20.2742−0.03790.33500.024*
C30.1616 (5)0.1141 (3)0.4149 (3)0.0162 (7)
H30.04940.07990.46680.019*
C40.1953 (5)0.2341 (3)0.4148 (3)0.0136 (6)
C50.3553 (5)0.2890 (3)0.3409 (3)0.0126 (6)
C60.3801 (5)0.4179 (3)0.3468 (3)0.0181 (6)
C70.5285 (4)0.4765 (3)0.2507 (3)0.0150 (6)
C80.5362 (5)0.5992 (3)0.2339 (3)0.0153 (6)
C90.6860 (5)0.6510 (3)0.1494 (3)0.0170 (6)
H90.68900.73400.13990.020*
C100.8297 (5)0.5827 (3)0.0795 (3)0.0183 (7)
H100.93420.61780.02290.022*
C110.8195 (5)0.4621 (3)0.0930 (3)0.0132 (6)
C120.6693 (5)0.4075 (3)0.1766 (3)0.0132 (6)
C130.6668 (5)0.2752 (3)0.1839 (3)0.0224 (7)
C140.4913 (4)0.2177 (3)0.2625 (3)0.0121 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0243 (3)0.0116 (4)0.0366 (4)0.0019 (3)0.0164 (3)−0.0016 (3)
Cl20.0267 (4)0.0132 (4)0.0370 (4)0.0049 (3)0.0168 (3)0.0022 (3)
O10.0307 (11)0.0364 (13)0.0147 (9)0.0029 (10)0.0041 (8)−0.0053 (9)
O20.0209 (10)0.0342 (13)0.0276 (11)0.0143 (10)−0.0015 (9)−0.0066 (10)
O30.0459 (13)0.0198 (12)0.0393 (13)−0.0033 (10)0.0285 (11)−0.0054 (10)
O40.0191 (11)0.0362 (14)0.0284 (11)0.0091 (9)−0.0015 (9)−0.0033 (10)
O50.0300 (12)0.070 (2)0.0210 (11)0.0167 (12)0.0000 (9)−0.0185 (12)
O60.0656 (17)0.0125 (12)0.094 (2)−0.0058 (12)0.0693 (17)−0.0087 (12)
N10.0140 (11)0.0161 (13)0.0147 (11)−0.0012 (9)0.0070 (9)0.0004 (10)
N20.0167 (12)0.0142 (13)0.0188 (12)−0.0046 (10)0.0064 (10)0.0013 (10)
C10.0172 (13)0.0089 (14)0.0168 (14)−0.0012 (11)0.0039 (11)0.0026 (11)
C20.0225 (15)0.0122 (15)0.0252 (15)−0.0012 (12)0.0051 (12)0.0029 (12)
C30.0133 (14)0.0175 (18)0.0183 (14)−0.0027 (12)0.0048 (11)0.0054 (12)
C40.0109 (12)0.0172 (16)0.0133 (13)0.0020 (11)0.0036 (10)−0.0002 (11)
C50.0140 (13)0.0131 (15)0.0106 (12)−0.0012 (10)0.0009 (10)−0.0013 (10)
C60.0212 (14)0.0118 (14)0.0226 (14)−0.0022 (11)0.0104 (12)−0.0021 (11)
C70.0144 (12)0.0151 (17)0.0154 (13)−0.0035 (11)0.0018 (10)0.0006 (10)
C80.0108 (13)0.0167 (16)0.0186 (14)0.0029 (11)0.0025 (11)−0.0036 (12)
C90.0208 (13)0.0108 (14)0.0198 (13)−0.0027 (11)0.0046 (11)0.0010 (11)
C100.0232 (16)0.0157 (17)0.0166 (14)−0.0026 (13)0.0053 (12)0.0008 (12)
C110.0136 (12)0.0127 (15)0.0137 (12)−0.0025 (11)0.0045 (10)−0.0013 (10)
C120.0131 (12)0.0129 (16)0.0138 (13)−0.0017 (12)0.0013 (10)0.0002 (10)
C130.0279 (15)0.0142 (15)0.0271 (16)−0.0009 (12)0.0170 (13)−0.0024 (12)
C140.0109 (12)0.0115 (16)0.0142 (12)0.0004 (10)0.0039 (10)0.0002 (10)

Geometric parameters (Å, °)

Cl1—C11.716 (3)C3—H30.9500
Cl2—C81.730 (3)C4—C51.385 (4)
O1—N11.216 (3)C5—C141.411 (4)
O2—N11.211 (3)C5—C61.476 (5)
O3—C61.213 (4)C6—C71.493 (4)
O4—N21.221 (3)C7—C121.390 (4)
O5—N21.197 (3)C7—C81.408 (5)
O6—C131.205 (4)C8—C91.390 (4)
N1—C41.483 (4)C9—C101.373 (5)
N2—C111.472 (4)C9—H90.9500
C1—C21.388 (4)C10—C111.382 (5)
C1—C141.405 (5)C10—H100.9500
C2—C31.386 (5)C11—C121.399 (4)
C2—H20.9500C12—C131.509 (5)
C3—C41.382 (4)C13—C141.492 (4)
O2—N1—O1124.9 (3)C12—C7—C8118.3 (3)
O2—N1—C4117.3 (2)C12—C7—C6118.8 (3)
O1—N1—C4117.7 (2)C8—C7—C6122.9 (3)
O5—N2—O4124.8 (3)C9—C8—C7121.2 (3)
O5—N2—C11118.1 (3)C9—C8—Cl2115.9 (3)
O4—N2—C11116.9 (2)C7—C8—Cl2122.8 (3)
C2—C1—C14120.7 (3)C10—C9—C8120.3 (3)
C2—C1—Cl1116.0 (3)C10—C9—H9119.9
C14—C1—Cl1123.3 (2)C8—C9—H9119.9
C3—C2—C1120.4 (3)C9—C10—C11118.8 (3)
C3—C2—H2119.8C9—C10—H10120.6
C1—C2—H2119.8C11—C10—H10120.6
C4—C3—C2118.3 (3)C10—C11—C12122.1 (3)
C4—C3—H3120.8C10—C11—N2116.0 (3)
C2—C3—H3120.8C12—C11—N2121.9 (3)
C3—C4—C5123.4 (3)C7—C12—C11119.2 (3)
C3—C4—N1115.1 (3)C7—C12—C13122.1 (3)
C5—C4—N1121.5 (3)C11—C12—C13118.7 (3)
C4—C5—C14117.8 (3)O6—C13—C14122.4 (3)
C4—C5—C6119.8 (3)O6—C13—C12119.4 (3)
C14—C5—C6122.3 (3)C14—C13—C12118.2 (3)
O3—C6—C5119.6 (3)C1—C14—C5119.3 (3)
O3—C6—C7121.5 (3)C1—C14—C13122.2 (3)
C5—C6—C7118.7 (3)C5—C14—C13118.5 (3)
C14—C1—C2—C3−2.0 (4)C9—C10—C11—N2179.0 (2)
Cl1—C1—C2—C3178.3 (2)O5—N2—C11—C10−87.6 (4)
C1—C2—C3—C40.9 (4)O4—N2—C11—C1087.7 (4)
C2—C3—C4—C50.3 (5)O5—N2—C11—C1292.1 (4)
C2—C3—C4—N1179.8 (2)O4—N2—C11—C12−92.5 (3)
O2—N1—C4—C3−94.0 (3)C8—C7—C12—C112.7 (4)
O1—N1—C4—C381.0 (3)C6—C7—C12—C11−175.8 (3)
O2—N1—C4—C585.4 (3)C8—C7—C12—C13−177.7 (3)
O1—N1—C4—C5−99.5 (3)C6—C7—C12—C133.8 (4)
C3—C4—C5—C14−0.4 (4)C10—C11—C12—C7−1.3 (4)
N1—C4—C5—C14−179.8 (2)N2—C11—C12—C7179.0 (2)
C3—C4—C5—C6−179.9 (3)C10—C11—C12—C13179.1 (3)
N1—C4—C5—C60.7 (4)N2—C11—C12—C13−0.6 (4)
C4—C5—C6—O313.8 (5)C7—C12—C13—O6−173.0 (3)
C14—C5—C6—O3−165.6 (3)C11—C12—C13—O66.6 (5)
C4—C5—C6—C7−170.8 (2)C7—C12—C13—C146.2 (5)
C14—C5—C6—C79.7 (4)C11—C12—C13—C14−174.2 (2)
O3—C6—C7—C12163.6 (3)C2—C1—C14—C51.9 (4)
C5—C6—C7—C12−11.6 (4)Cl1—C1—C14—C5−178.4 (2)
O3—C6—C7—C8−14.9 (5)C2—C1—C14—C13−179.7 (3)
C5—C6—C7—C8169.9 (3)Cl1—C1—C14—C130.0 (4)
C12—C7—C8—C9−2.3 (4)C4—C5—C14—C1−0.7 (4)
C6—C7—C8—C9176.2 (3)C6—C5—C14—C1178.8 (3)
C12—C7—C8—Cl2176.9 (2)C4—C5—C14—C13−179.1 (3)
C6—C7—C8—Cl2−4.6 (4)C6—C5—C14—C130.4 (4)
C7—C8—C9—C100.3 (4)O6—C13—C14—C1−7.4 (5)
Cl2—C8—C9—C10−178.9 (2)C12—C13—C14—C1173.4 (3)
C8—C9—C10—C111.2 (4)O6—C13—C14—C5171.0 (3)
C9—C10—C11—C12−0.7 (5)C12—C13—C14—C5−8.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2270).

References

  • Armaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o1164. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Nagai, M., Miyao, T. & Tuboi, T. (1993). Catal. Lett.18, 9–14.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920-925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography