PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2029.
Published online 2010 July 17. doi:  10.1107/S1600536810008603
PMCID: PMC3007327

[Hydrogen bis­(1,2,4-triazole)] 1,2,4-triazolium bis­(3-carb­oxy-4-hy­droxy­benzene­sulfonate) 1,2,4-triazole disolvate

Abstract

The title compound, C2H4N3 +·[H(C2H3N3)2]+·2C7H5O6S·2C2H3N3, consists of two types of 1,2,4-triazole monocation, one protonated at the 2-site lying across a twofold axis and the other protonated at the 4-site with the H atom disordered over a center of symmetry, a 5-sulfosalicylate anion and a neutral 1,2,4-triazole mol­ecule. The component ions are linked into a three-dimensional network by a combination of N—H(...)O, N—H(...)N, O—H(...)O, O—H(...)N, C—H(...)O and C—H(...)N hydrogen bonds. In addition, benzene–benzene π–π inter­actions of 3.942 (2) Å [inter­planar spacing = 3.390 (2) Å] and C—O(...)π (3.331 Å) inter­actions are observed.

Related literature

For potential applications of co-crystals, see: Aakeröy et al. (2009 [triangle]); Chen et al. (2010 [triangle]); For co-crystals involved 5-sulfosaliyclic acid or triazole, see: Jin et al. (2006 [triangle]); Kiviniemi et al. (2000 [triangle]); Meng et al. (2007 [triangle], 2008 [triangle]); Ye et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2029-scheme1.jpg

Experimental

Crystal data

  • C2H4N3 +·C4H7N6 +·2C7H5O6S·2C2H3N3
  • M r = 781.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2029-efi1.jpg
  • a = 21.2585 (5) Å
  • b = 5.1471 (2) Å
  • c = 32.2084 (15) Å
  • β = 106.669 (2)°
  • V = 3376.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 295 K
  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.921, T max = 0.962
  • 18315 measured reflections
  • 3853 independent reflections
  • 3005 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.124
  • S = 1.09
  • 3853 reflections
  • 240 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008603/lh5006sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008603/lh5006Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Due to its potential applications in pharmaceuticals, the synthesis of co-crystals has become very attractive area of research recently (Chen et al., 2010, Aakeröy et al., 2009). Many cocrystals and organic salts were synthesized using 5-sulfosaliyclic acid and N-containing Lewis bases (Meng et al., 2007, 2008). We here report our findings on the title compound I, cf. Scheme 1.

In compound (I), only the sulfonic-acid hydrogen atoms were transferred to triazole N atoms, resulting in a 5-sulfosalicylate anion and two type of cations i.e. one was protonated at 2- site lying across a twofold axis and the other protonated at 4-site with the hydrogen being disordered over a center of symmetry. Besides above mentioned, there is still one neutral 1,2,4-triazole molecule in (I) (Fig. 1). The N7—N7v (2 - x, y, 3/2 - z) bond length of 1.309 (3)Å is apparently shorter than some analogs which should be largely attributed to its protonated position at the 2- site, but not the generally observed 4-site (Jin et al., 2006; Ye et al., 2008; Kiviniemi et al., 2000).

In the packing structure of (I), the ionic components are linked into three-dimensional networks by a combination of N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). Analysis using PLATON (Spek, 2009) indicates that π···π interactions exist between symmetry-related benzene rings in these layers [centroid-to-centroid separation = 3.942 (2) Å, inter-planar spacing = 3.390 (2) Å and symmetry codes: 1/2 - x, 3/2 - y, 1 - z]. Additionally, the crystal structure was further consolidated by a O—H···π interaction which was scarcely observed [O3···Cg2 = 3.329 (2)\%A, Cg2 is the centroid defined by atoms N7/N8/C12 at (x - 1/2, y + 1/2, z) and atoms N7/N8/C12 at (-x + 3/2, y + 1/2, 3/2 - z)].

Experimental

A 3:1 molar amount of 1,2,4-triazole (0.6 mmol, 41.4 mg) to 5-sulfosaliyclic acid dihydrate (0.2 mmol, 50.8 mg) were dissolved in 95% methanol (40 ml). The mixture was stirred for several minutes at ambient temperature and then filtered. The resulting colorless solution was kept in air for two weeks. Colorless block crystals of (I) suitable for X-ray diffraction were grown by slow evaporation at the bottom of the vessel.

Refinement

H atoms bonded to aromatic C atoms were positioned geometrically with C–H = 0.93 Å, and refined in a riding mode [Uiso(H) = 1.2Ueq(aromatic C)]. H atoms bonded to N and O atoms were initially found in difference maps and then constrained to be at their ideal positions (N—H = 0.86Å and O—H = 0.82 Å). Their thermal factors were set k times of their carrier atoms (k=1.2 for N and 1.5 for O atoms, respectively). C12/N7' and N7/C12' atoms were occupationally disordered with occupancies of 0.5:0.5, respectively. H6A is disordered over a center of inversion and its occupancy was set 0.5.

Figures

Fig. 1.
Molecular structures of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code: (a) 2 - x, y, 3/2 - z)
Fig. 2.
Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines.

Crystal data

C2H4N3+·C4H7N6+·2C7H5O6S·2C2H3N3F(000) = 1616
Mr = 781.73Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6709 reflections
a = 21.2585 (5) Åθ = 2.4–27.4°
b = 5.1471 (2) ŵ = 0.24 mm1
c = 32.2084 (15) ÅT = 295 K
β = 106.669 (2)°Block, colorless
V = 3376.1 (2) Å30.30 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3853 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3005 reflections with I > 2σ(I)
graphiteRint = 0.062
0.3° wide ω exposures scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −27→27
Tmin = 0.921, Tmax = 0.962k = −6→6
18315 measured reflectionsl = −41→41

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0743P)2] where P = (Fo2 + 2Fc2)/3
3853 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.66592 (8)0.1594 (3)0.66015 (5)0.0349 (4)
C20.66022 (9)0.3282 (4)0.69313 (6)0.0412 (4)
C30.70762 (9)0.5162 (4)0.70910 (6)0.0450 (4)
H30.70340.62830.73080.054*
C40.76066 (9)0.5383 (4)0.69313 (5)0.0397 (4)
H40.79220.66550.70400.048*
C50.76747 (8)0.3715 (3)0.66080 (5)0.0308 (3)
C60.72049 (7)0.1834 (3)0.64446 (5)0.0326 (4)
H60.72520.07190.62280.039*
C70.61526 (8)−0.0409 (4)0.64341 (6)0.0408 (4)
C80.48133 (9)0.4771 (4)0.61003 (6)0.0475 (5)
H80.48160.59380.63210.057*
C90.50432 (10)0.2716 (4)0.56064 (7)0.0520 (5)
H90.52600.21870.54080.062*
C100.32077 (9)0.5933 (4)0.53084 (6)0.0482 (5)
H100.31070.60200.55710.058*
C110.32417 (11)0.4882 (5)0.46875 (7)0.0635 (6)
H110.31530.40190.44230.076*
C120.95952 (7)−0.0581 (3)0.72250 (5)0.0361 (4)0.50
H120.9251−0.11170.69910.043*0.50
N7'0.95952 (7)−0.0581 (3)0.72250 (5)0.0361 (4)0.50
H7'0.9277−0.10770.70080.043*0.50
S10.836787 (18)0.39131 (8)0.641015 (13)0.03328 (15)
N10.43718 (7)0.2946 (3)0.59598 (5)0.0472 (4)
H1A0.40430.26640.60580.057*
N20.45067 (8)0.1586 (3)0.56410 (6)0.0513 (4)
N30.52520 (7)0.4707 (3)0.58830 (5)0.0472 (4)
N40.36238 (8)0.7445 (3)0.51939 (6)0.0538 (4)
H4A0.38490.86220.53610.065*
N50.36563 (10)0.6798 (4)0.47949 (6)0.0719 (6)
N60.29550 (7)0.4275 (3)0.49953 (5)0.0431 (4)
H6A0.26710.30750.49890.052*0.50
N70.97459 (8)0.1865 (3)0.73276 (5)0.0416 (4)0.50
H70.95470.32090.71930.050*0.50
C12'0.97459 (8)0.1865 (3)0.73276 (5)0.0416 (4)0.50
H12'0.95310.33180.71820.050*0.50
N81.0000−0.2185 (4)0.75000.0355 (4)
O10.62327 (6)−0.1836 (3)0.61157 (4)0.0480 (3)
H10.5922−0.28740.60430.072*
O20.56876 (6)−0.0698 (3)0.65856 (5)0.0564 (4)
O30.60993 (7)0.3137 (3)0.71072 (5)0.0634 (4)
H3A0.58910.18850.69690.095*
O40.81766 (6)0.5286 (3)0.60014 (4)0.0488 (3)
O50.85622 (6)0.1272 (2)0.63667 (4)0.0494 (3)
O60.88616 (6)0.5346 (3)0.67359 (4)0.0527 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0309 (8)0.0349 (9)0.0413 (9)−0.0020 (7)0.0143 (7)0.0024 (7)
C20.0406 (9)0.0445 (11)0.0447 (10)0.0000 (8)0.0219 (8)0.0003 (8)
C30.0496 (10)0.0456 (11)0.0445 (10)−0.0010 (9)0.0210 (8)−0.0114 (8)
C40.0409 (9)0.0370 (10)0.0408 (9)−0.0072 (8)0.0112 (7)−0.0053 (7)
C50.0293 (8)0.0308 (9)0.0321 (8)−0.0024 (6)0.0082 (6)0.0014 (6)
C60.0312 (8)0.0329 (9)0.0363 (8)−0.0044 (7)0.0138 (7)−0.0028 (7)
C70.0331 (9)0.0409 (10)0.0508 (10)−0.0075 (8)0.0158 (8)0.0017 (8)
C80.0404 (10)0.0487 (12)0.0582 (12)−0.0127 (9)0.0217 (9)−0.0063 (9)
C90.0432 (10)0.0553 (12)0.0634 (12)−0.0136 (9)0.0249 (9)−0.0123 (10)
C100.0430 (10)0.0528 (12)0.0481 (11)−0.0086 (9)0.0121 (8)−0.0094 (9)
C110.0566 (12)0.0892 (17)0.0477 (12)−0.0238 (13)0.0198 (10)−0.0170 (11)
C120.0348 (8)0.0347 (9)0.0361 (8)−0.0063 (6)0.0059 (6)−0.0029 (6)
N7'0.0348 (8)0.0347 (9)0.0361 (8)−0.0063 (6)0.0059 (6)−0.0029 (6)
S10.0259 (2)0.0380 (3)0.0359 (2)−0.00670 (16)0.00876 (16)0.00054 (16)
N10.0359 (8)0.0499 (10)0.0617 (10)−0.0109 (7)0.0234 (7)0.0004 (8)
N20.0414 (9)0.0472 (10)0.0674 (11)−0.0149 (7)0.0191 (8)−0.0066 (8)
N30.0356 (8)0.0497 (10)0.0608 (10)−0.0139 (7)0.0207 (7)−0.0069 (8)
N40.0464 (9)0.0511 (11)0.0590 (11)−0.0158 (8)0.0074 (8)−0.0075 (8)
N50.0626 (12)0.0949 (16)0.0629 (12)−0.0335 (11)0.0254 (10)−0.0039 (11)
N60.0365 (8)0.0494 (9)0.0421 (8)−0.0128 (7)0.0095 (6)−0.0086 (7)
N70.0426 (9)0.0297 (8)0.0441 (9)0.0030 (7)−0.0009 (7)0.0037 (7)
C12'0.0426 (9)0.0297 (8)0.0441 (9)0.0030 (7)−0.0009 (7)0.0037 (7)
N80.0364 (10)0.0281 (8)0.0428 (11)0.0000.0125 (9)0.000
O10.0388 (7)0.0499 (8)0.0595 (8)−0.0196 (6)0.0206 (6)−0.0140 (6)
O20.0427 (7)0.0598 (9)0.0770 (10)−0.0165 (7)0.0337 (7)−0.0083 (7)
O30.0590 (9)0.0729 (10)0.0759 (10)−0.0122 (8)0.0474 (8)−0.0169 (8)
O40.0412 (7)0.0626 (9)0.0434 (7)−0.0075 (6)0.0135 (6)0.0133 (6)
O50.0434 (7)0.0422 (8)0.0690 (9)0.0032 (6)0.0265 (6)−0.0008 (6)
O60.0359 (7)0.0646 (9)0.0534 (8)−0.0200 (6)0.0060 (6)−0.0085 (7)

Geometric parameters (Å, °)

C1—C61.397 (2)C10—H100.9300
C1—C21.404 (2)C11—N51.302 (3)
C1—C71.477 (2)C11—N61.341 (2)
C2—O31.348 (2)C11—H110.9300
C2—C31.386 (3)C12—N71.318 (2)
C3—C41.372 (2)C12—N81.3299 (18)
C3—H30.9300C12—H120.9300
C4—C51.389 (2)S1—O51.4390 (14)
C4—H40.9300S1—O41.4462 (12)
C5—C61.382 (2)S1—O61.4542 (12)
C5—S11.7683 (16)N1—N21.340 (2)
C6—H60.9300N1—H1A0.8600
C7—O21.230 (2)N4—N51.348 (2)
C7—O11.311 (2)N4—H4A0.8589
C8—N11.313 (2)N6—H6A0.8600
C8—N31.317 (2)N7—N7i1.309 (3)
C8—H80.9300N7—H70.8600
C9—N21.313 (2)N8—N7'i1.3299 (19)
C9—N31.347 (2)N8—C12i1.3299 (19)
C9—H90.9300O1—H10.8298
C10—N41.308 (2)O3—H3A0.8349
C10—N61.313 (2)
C6—C1—C2118.65 (15)N5—C11—H11123.3
C6—C1—C7121.60 (15)N6—C11—H11123.3
C2—C1—C7119.74 (15)N7—C12—N8111.20 (15)
O3—C2—C3117.57 (16)N7—C12—H12124.4
O3—C2—C1122.33 (16)N8—C12—H12124.4
C3—C2—C1120.10 (15)O5—S1—O4112.75 (8)
C4—C3—C2120.49 (16)O5—S1—O6112.42 (9)
C4—C3—H3119.8O4—S1—O6111.42 (8)
C2—C3—H3119.8O5—S1—C5105.83 (8)
C3—C4—C5120.22 (16)O4—S1—C5108.09 (7)
C3—C4—H4119.9O6—S1—C5105.84 (8)
C5—C4—H4119.9C8—N1—N2110.43 (15)
C6—C5—C4119.95 (15)C8—N1—H1A124.8
C6—C5—S1119.28 (12)N2—N1—H1A124.8
C4—C5—S1120.75 (13)C9—N2—N1102.45 (15)
C5—C6—C1120.57 (15)C8—N3—C9102.77 (15)
C5—C6—H6119.7C10—N4—N5110.21 (16)
C1—C6—H6119.7C10—N4—H4A123.0
O2—C7—O1122.79 (16)N5—N4—H4A126.8
O2—C7—C1121.63 (17)C11—N5—N4102.98 (17)
O1—C7—C1115.58 (14)C10—N6—C11104.11 (17)
N1—C8—N3110.12 (17)C10—N6—H6A127.9
N1—C8—H8124.9C11—N6—H6A127.9
N3—C8—H8124.9N7i—N7—C12107.15 (10)
N2—C9—N3114.23 (18)N7i—N7—H7126.4
N2—C9—H9122.9C12—N7—H7126.4
N3—C9—H9122.9N7'i—N8—C12103.29 (18)
N4—C10—N6109.32 (18)C12i—N8—C12103.29 (18)
N4—C10—H10125.3C7—O1—H1108.1
N6—C10—H10125.3C2—O3—H3A100.5
N5—C11—N6113.38 (19)
C6—C1—C2—O3−178.42 (17)C4—C5—S1—O5137.75 (15)
C7—C1—C2—O30.5 (3)C6—C5—S1—O480.28 (15)
C6—C1—C2—C30.9 (3)C4—C5—S1—O4−101.22 (15)
C7—C1—C2—C3179.84 (17)C6—C5—S1—O6−160.25 (13)
O3—C2—C3—C4178.88 (17)C4—C5—S1—O618.24 (16)
C1—C2—C3—C4−0.5 (3)N3—C8—N1—N20.2 (2)
C2—C3—C4—C5−0.2 (3)N3—C9—N2—N1−0.2 (2)
C3—C4—C5—C60.4 (3)C8—N1—N2—C90.0 (2)
C3—C4—C5—S1−178.12 (14)N1—C8—N3—C9−0.3 (2)
C4—C5—C6—C10.1 (3)N2—C9—N3—C80.3 (2)
S1—C5—C6—C1178.59 (13)N6—C10—N4—N5−0.2 (2)
C2—C1—C6—C5−0.7 (3)N6—C11—N5—N4−0.5 (3)
C7—C1—C6—C5−179.63 (15)C10—N4—N5—C110.4 (3)
C6—C1—C7—O2176.66 (17)N4—C10—N6—C11−0.1 (2)
C2—C1—C7—O2−2.3 (3)N5—C11—N6—C100.4 (3)
C6—C1—C7—O1−3.5 (2)N8—C12—N7—N7i0.1 (2)
C2—C1—C7—O1177.61 (16)N7—C12—N8—N7'i−0.03 (10)
C6—C5—S1—O5−40.75 (15)N7—C12—N8—C12i−0.03 (10)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.172.9231 (18)145
N1—H1A···O5iii0.862.462.984 (2)120
N4—H4A···N2iv0.862.092.931 (2)166
N6—H6A···N6v0.861.812.667 (3)175
N7—H7···O60.862.072.885 (2)159
N7'—H7'···O50.862.503.145 (2)133
N7'—H7'···O6vi0.862.122.8104 (19)137
O3—H3A···O20.831.782.577 (2)159
O1—H1···N3vi0.831.852.6791 (19)178
C8—H8···O2iv0.932.503.110 (2)123
C9—H9···N5vii0.932.623.381 (3)139
C10—H10···O4iii0.932.583.177 (2)122
C10—H10···O5iii0.932.473.278 (2)145

Symmetry codes: (ii) x−1/2, y−1/2, z; (iii) x−1/2, y+1/2, z; (iv) x, y+1, z; (v) −x+1/2, −y+1/2, −z+1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5006).

References

  • Aakeröy, C. B., Forbes, S. & Desper, J. (2009). J. Am. Chem. Soc.131, 17048–17049. [PubMed]
  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, S., Xi, H. M., Henry, R. F., Marsden, I. & Zhang, G. G. Z. (2010). New J. Chem.12, 1485–1493.
  • Jin, C.-M., Wu, L.-Y., Chen, C.-Y. & Hu, S.-L. (2006). Acta Cryst. E62, o4515–o4516.
  • Kiviniemi, S., Nissinen, M., Lämsä, M. T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2000). New J. Chem.24, 47–52.
  • Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57. [PubMed]
  • Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670. [PubMed]
  • Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Ye, C. F., Gao, H. X., Twamley, B. & Shreeve, J. M. (2008). New J. Chem.32, 317–322.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography