PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m878.
Published online 2010 July 3. doi:  10.1107/S160053681002550X
PMCID: PMC3007325

[2-(3,5-Dimethyl-1H-pyrazol-1-yl-κN 2)-1,10-phenanthroline-κ2 N,N′]bis­(nitrito-κ2 O,O′)cadmium(II)

Abstract

In the title complex, [Cd(NO2)2(C17H14N4)], the CdII ion assumes a distorted monocapped octa­hedral coordination geometry defined by an N3O4 donor set. The crystal structure is stabilized by π–π stacking inter­actions [shortest centroid–centroid distance = 3.5537 (18) Å].

Related literature

For related structures, see: Wang et al. (2009 [triangle]); Sun et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m878-scheme1.jpg

Experimental

Crystal data

  • [Cd(NO2)2(C17H14N4)]
  • M r = 478.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m878-efi1.jpg
  • a = 10.0306 (15) Å
  • b = 10.4694 (15) Å
  • c = 10.5702 (15) Å
  • α = 67.697 (2)°
  • β = 83.508 (2)°
  • γ = 62.326 (2)°
  • V = 906.8 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 298 K
  • 0.51 × 0.46 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.570, T max = 0.865
  • 4759 measured reflections
  • 3305 independent reflections
  • 3098 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.087
  • S = 1.03
  • 3305 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002550X/tk2681sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002550X/tk2681Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Shandong Provincial Natural Science Foundation of China (grant No. ZR2009BM026) for support.

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in coordination chemistry and many complexes have been published with these molecules functioning as ligands. To our knowledge, two cadmium complexes with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline derivative as the ligand have been reported (Wang et al., 2009; Sun et al., 2010). To study the relevance between the coordination geometry with anion, we synthesized the title complex, (I), and herein report its crystal structure.

The molecular structure of (I), Fig. 1, shows the CdII atom is coordinated by three N atoms and four O atoms within a distorted monocapped octahedral coordination geometry. The coordination geometry in (I) contrasts the penta-coordination found in the structures of the related di-chloride and di-thiocyanate derivatives (Wang et al., 2009; Sun et al., 2010). The non-hydrogen atoms of the 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10- phenanthroline ligand define an approximate plane with a r.m.s. value = 0.0917 Å; the maximum deviation of 0.2066 (33) Å is found for the C17 atom. The crystal structure is stabilised by π–π stacking interactions with the closest of these occurring between centrosymmetrically related C4–C8 rings [Cg1···Cg1i = 3.5537 (18) Å for i: 1-x, 2-y, -z].

Experimental

A methanol (12 ml) solution of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0544 g, 0.20 mmol) was added to an aqueous (12 ml) solution of CdCl22.5H2O (0.0460 g, 0.20 mmol) and NaNO2 (0.0138 g, 0.20 mmol). The resultant mixture was stirred for a few minutes. The colorless swere obtained after the filtrate had been allowed to stand at room temperature for about a week.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for methyl-H, and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the remaining H atoms.

Figures

Fig. 1.
Molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cd(NO2)2(C17H14N4)]Z = 2
Mr = 478.74F(000) = 476
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0306 (15) ÅCell parameters from 3811 reflections
b = 10.4694 (15) Åθ = 2.3–28.3°
c = 10.5702 (15) ŵ = 1.24 mm1
α = 67.697 (2)°T = 298 K
β = 83.508 (2)°Prism, colorless
γ = 62.326 (2)°0.51 × 0.46 × 0.12 mm
V = 906.8 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer3305 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→10
Tmin = 0.570, Tmax = 0.865k = −12→12
4759 measured reflectionsl = −12→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0902P] where P = (Fo2 + 2Fc2)/3
3305 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8940 (4)0.7002 (4)0.0995 (4)0.0528 (8)
H10.97760.61720.08660.063*
C20.8991 (4)0.8398 (5)0.0647 (4)0.0627 (9)
H20.98570.84830.03140.075*
C30.7766 (4)0.9641 (4)0.0796 (4)0.0572 (8)
H30.77871.05830.05590.069*
C40.6478 (4)0.9489 (3)0.1308 (3)0.0458 (7)
C50.6521 (3)0.8032 (3)0.1659 (3)0.0402 (6)
C60.5225 (3)0.7823 (3)0.2193 (3)0.0398 (6)
C70.5130 (4)1.0744 (4)0.1465 (3)0.0534 (8)
H70.50951.17110.12240.064*
C80.3910 (4)1.0552 (4)0.1956 (3)0.0536 (8)
H80.30451.13860.20460.064*
C90.3936 (4)0.9079 (4)0.2340 (3)0.0470 (7)
C100.2713 (4)0.8775 (4)0.2884 (4)0.0568 (8)
H100.18180.95790.29760.068*
C110.2820 (4)0.7333 (5)0.3275 (4)0.0590 (9)
H110.20190.71370.36520.071*
C120.4179 (3)0.6140 (4)0.3094 (3)0.0437 (7)
C130.3548 (4)0.3861 (5)0.4020 (3)0.0576 (9)
C140.4446 (5)0.2345 (5)0.4242 (4)0.0641 (10)
H140.41590.15570.45930.077*
C150.5872 (4)0.2164 (4)0.3855 (3)0.0553 (8)
C160.1917 (5)0.4631 (7)0.4248 (6)0.0902 (15)
H16A0.15310.38880.45280.135*
H16B0.13710.54640.34130.135*
H16C0.17980.50380.49520.135*
C170.7278 (5)0.0756 (4)0.3908 (4)0.0706 (10)
H17A0.80180.10520.34160.106*
H17B0.70700.01860.34970.106*
H17C0.76580.01150.48460.106*
Cd10.74600 (2)0.45092 (2)0.19946 (2)0.04206 (11)
N10.7751 (3)0.6801 (3)0.1503 (3)0.0436 (6)
N20.5317 (3)0.6403 (3)0.2551 (2)0.0394 (5)
N30.4451 (3)0.4590 (3)0.3502 (2)0.0464 (6)
N40.5876 (3)0.3530 (3)0.3395 (3)0.0494 (6)
N50.7056 (4)0.4176 (4)−0.0441 (4)0.0718 (9)
N61.0386 (4)0.2533 (4)0.3336 (4)0.0706 (9)
O10.6887 (5)0.5379 (4)−0.0360 (3)0.0914 (11)
O20.7445 (4)0.3093 (4)0.0665 (3)0.0847 (9)
O31.0138 (3)0.3075 (5)0.2082 (4)0.0996 (12)
O40.9256 (3)0.2980 (4)0.3935 (3)0.0857 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0421 (17)0.0449 (18)0.067 (2)−0.0137 (14)0.0081 (15)−0.0254 (16)
C20.059 (2)0.057 (2)0.078 (2)−0.0304 (18)0.0145 (18)−0.0291 (19)
C30.065 (2)0.0430 (18)0.068 (2)−0.0264 (17)0.0051 (17)−0.0227 (16)
C40.0537 (18)0.0334 (15)0.0454 (16)−0.0130 (14)−0.0035 (13)−0.0169 (13)
C50.0425 (16)0.0332 (14)0.0391 (15)−0.0106 (12)−0.0006 (12)−0.0152 (12)
C60.0390 (15)0.0357 (15)0.0355 (14)−0.0066 (12)−0.0021 (11)−0.0161 (12)
C70.063 (2)0.0314 (15)0.057 (2)−0.0089 (15)−0.0054 (16)−0.0211 (14)
C80.0507 (19)0.0380 (17)0.0572 (19)−0.0008 (14)−0.0040 (15)−0.0256 (15)
C90.0441 (17)0.0416 (17)0.0455 (16)−0.0058 (13)−0.0003 (13)−0.0231 (14)
C100.0406 (17)0.056 (2)0.061 (2)−0.0068 (15)0.0097 (14)−0.0309 (17)
C110.0436 (18)0.066 (2)0.062 (2)−0.0187 (17)0.0184 (15)−0.0306 (18)
C120.0411 (16)0.0480 (18)0.0397 (15)−0.0162 (14)0.0030 (12)−0.0193 (13)
C130.066 (2)0.074 (3)0.0502 (19)−0.047 (2)0.0113 (16)−0.0240 (18)
C140.084 (3)0.065 (2)0.061 (2)−0.051 (2)0.0118 (19)−0.0213 (18)
C150.070 (2)0.0457 (19)0.0455 (18)−0.0277 (17)−0.0049 (15)−0.0077 (14)
C160.068 (3)0.107 (4)0.130 (4)−0.058 (3)0.038 (3)−0.065 (3)
C170.082 (3)0.041 (2)0.075 (3)−0.0236 (19)−0.007 (2)−0.0105 (17)
Cd10.03898 (16)0.03134 (15)0.04817 (16)−0.00813 (10)0.00277 (10)−0.01716 (11)
N10.0372 (13)0.0351 (13)0.0507 (14)−0.0087 (11)0.0027 (10)−0.0181 (11)
N20.0388 (13)0.0358 (13)0.0393 (13)−0.0106 (10)0.0033 (10)−0.0179 (10)
N30.0468 (15)0.0499 (16)0.0406 (13)−0.0229 (13)0.0040 (11)−0.0141 (12)
N40.0494 (15)0.0377 (14)0.0526 (15)−0.0161 (12)0.0000 (12)−0.0122 (12)
N50.088 (2)0.068 (2)0.066 (2)−0.0303 (19)0.0007 (18)−0.0366 (19)
N60.0464 (18)0.059 (2)0.080 (2)−0.0031 (15)−0.0064 (16)−0.0233 (17)
O10.145 (3)0.0523 (17)0.0643 (18)−0.0356 (19)−0.0171 (19)−0.0150 (14)
O20.124 (3)0.0607 (18)0.080 (2)−0.0447 (19)0.0119 (18)−0.0346 (17)
O30.0577 (17)0.108 (3)0.087 (2)0.0068 (17)0.0056 (16)−0.049 (2)
O40.0579 (18)0.101 (3)0.0636 (17)−0.0140 (17)0.0001 (14)−0.0228 (16)

Geometric parameters (Å, °)

C1—N11.325 (4)C13—N31.384 (4)
C1—C21.390 (5)C13—C161.490 (6)
C1—H10.9300C14—C151.387 (5)
C2—C31.361 (5)C14—H140.9300
C2—H20.9300C15—N41.325 (4)
C3—C41.398 (5)C15—C171.480 (5)
C3—H30.9300C16—H16A0.9600
C4—C51.407 (4)C16—H16B0.9600
C4—C71.430 (4)C16—H16C0.9600
C5—N11.360 (4)C17—H17A0.9600
C5—C61.435 (4)C17—H17B0.9600
C6—N21.348 (4)C17—H17C0.9600
C6—C91.398 (4)Cd1—O12.339 (3)
C7—C81.346 (5)Cd1—N22.353 (2)
C7—H70.9300Cd1—N42.366 (3)
C8—C91.426 (5)Cd1—O42.383 (3)
C8—H80.9300Cd1—O32.384 (3)
C9—C101.414 (5)Cd1—N12.405 (3)
C10—C111.359 (5)Cd1—O22.405 (3)
C10—H100.9300N3—N41.368 (4)
C11—C121.413 (4)N5—O21.221 (5)
C11—H110.9300N5—O11.226 (4)
C12—N21.316 (4)N6—O41.215 (4)
C12—N31.406 (4)N6—O31.231 (5)
C13—C141.350 (6)
N1—C1—C2122.9 (3)C13—C16—H16C109.5
N1—C1—H1118.5H16A—C16—H16C109.5
C2—C1—H1118.5H16B—C16—H16C109.5
C3—C2—C1119.6 (3)C15—C17—H17A109.5
C3—C2—H2120.2C15—C17—H17B109.5
C1—C2—H2120.2H17A—C17—H17B109.5
C2—C3—C4119.4 (3)C15—C17—H17C109.5
C2—C3—H3120.3H17A—C17—H17C109.5
C4—C3—H3120.3H17B—C17—H17C109.5
C3—C4—C5117.6 (3)O1—Cd1—N2100.09 (11)
C3—C4—C7123.1 (3)O1—Cd1—N4114.23 (12)
C5—C4—C7119.2 (3)N2—Cd1—N466.36 (9)
N1—C5—C4122.3 (3)O1—Cd1—O4150.01 (13)
N1—C5—C6118.2 (3)N2—Cd1—O4108.46 (10)
C4—C5—C6119.5 (3)N4—Cd1—O486.20 (11)
N2—C6—C9122.7 (3)O1—Cd1—O399.45 (13)
N2—C6—C5118.0 (2)N2—Cd1—O3149.49 (12)
C9—C6—C5119.3 (3)N4—Cd1—O3124.70 (12)
C8—C7—C4121.3 (3)O4—Cd1—O350.74 (11)
C8—C7—H7119.3O1—Cd1—N186.96 (10)
C4—C7—H7119.3N2—Cd1—N169.42 (8)
C7—C8—C9120.5 (3)N4—Cd1—N1133.43 (8)
C7—C8—H8119.8O4—Cd1—N194.45 (11)
C9—C8—H8119.8O3—Cd1—N188.51 (12)
C6—C9—C10115.9 (3)O1—Cd1—O250.78 (11)
C6—C9—C8120.2 (3)N2—Cd1—O2125.87 (11)
C10—C9—C8124.0 (3)N4—Cd1—O284.64 (10)
C11—C10—C9121.4 (3)O4—Cd1—O2114.27 (13)
C11—C10—H10119.3O3—Cd1—O284.62 (13)
C9—C10—H10119.3N1—Cd1—O2134.93 (10)
C10—C11—C12118.3 (3)C1—N1—C5118.1 (3)
C10—C11—H11120.9C1—N1—Cd1125.9 (2)
C12—C11—H11120.9C5—N1—Cd1115.75 (19)
N2—C12—N3114.7 (3)C12—N2—C6120.2 (2)
N2—C12—C11121.5 (3)C12—N2—Cd1121.6 (2)
N3—C12—C11123.8 (3)C6—N2—Cd1117.96 (19)
C14—C13—N3105.7 (3)N4—N3—C13110.0 (3)
C14—C13—C16128.3 (4)N4—N3—C12117.2 (2)
N3—C13—C16126.0 (4)C13—N3—C12132.8 (3)
C13—C14—C15108.2 (3)C15—N4—N3106.5 (3)
C13—C14—H14125.9C15—N4—Cd1133.7 (2)
C15—C14—H14125.9N3—N4—Cd1117.23 (19)
N4—C15—C14109.6 (3)O2—N5—O1112.5 (3)
N4—C15—C17119.7 (3)O4—N6—O3113.3 (3)
C14—C15—C17130.7 (3)N5—O1—Cd199.9 (2)
C13—C16—H16A109.5N5—O2—Cd196.7 (2)
C13—C16—H16B109.5N6—O3—Cd197.7 (2)
H16A—C16—H16B109.5N6—O4—Cd198.2 (2)
N1—C1—C2—C3−1.6 (6)O1—Cd1—N2—C6−75.5 (2)
C1—C2—C3—C40.5 (6)N4—Cd1—N2—C6172.3 (2)
C2—C3—C4—C50.5 (5)O4—Cd1—N2—C695.2 (2)
C2—C3—C4—C7−178.4 (3)O3—Cd1—N2—C653.6 (3)
C3—C4—C5—N1−0.6 (4)N1—Cd1—N2—C67.36 (19)
C7—C4—C5—N1178.3 (3)O2—Cd1—N2—C6−123.9 (2)
C3—C4—C5—C6179.8 (3)C14—C13—N3—N40.8 (4)
C7—C4—C5—C6−1.3 (4)C16—C13—N3—N4−178.2 (4)
N1—C5—C6—N22.0 (4)C14—C13—N3—C12−179.0 (3)
C4—C5—C6—N2−178.4 (3)C16—C13—N3—C122.0 (6)
N1—C5—C6—C9−178.8 (3)N2—C12—N3—N45.0 (4)
C4—C5—C6—C90.8 (4)C11—C12—N3—N4−173.2 (3)
C3—C4—C7—C8179.6 (3)N2—C12—N3—C13−175.2 (3)
C5—C4—C7—C80.8 (5)C11—C12—N3—C136.6 (5)
C4—C7—C8—C90.3 (5)C14—C15—N4—N30.8 (4)
N2—C6—C9—C10−0.4 (4)C17—C15—N4—N3−178.3 (3)
C5—C6—C9—C10−179.5 (3)C14—C15—N4—Cd1−160.0 (2)
N2—C6—C9—C8179.4 (3)C17—C15—N4—Cd120.9 (5)
C5—C6—C9—C80.2 (4)C13—N3—N4—C15−1.0 (3)
C7—C8—C9—C6−0.8 (5)C12—N3—N4—C15178.9 (2)
C7—C8—C9—C10178.9 (3)C13—N3—N4—Cd1163.5 (2)
C6—C9—C10—C112.0 (5)C12—N3—N4—Cd1−16.7 (3)
C8—C9—C10—C11−177.8 (3)O1—Cd1—N4—C1583.4 (3)
C9—C10—C11—C12−1.5 (5)N2—Cd1—N4—C15174.1 (3)
C10—C11—C12—N2−0.6 (5)O4—Cd1—N4—C15−73.9 (3)
C10—C11—C12—N3177.6 (3)O3—Cd1—N4—C15−38.7 (3)
N3—C13—C14—C15−0.3 (4)N1—Cd1—N4—C15−166.4 (3)
C16—C13—C14—C15178.7 (4)O2—Cd1—N4—C1541.0 (3)
C13—C14—C15—N4−0.3 (4)O1—Cd1—N4—N3−75.8 (2)
C13—C14—C15—C17178.7 (4)N2—Cd1—N4—N314.91 (19)
C2—C1—N1—C51.5 (5)O4—Cd1—N4—N3127.0 (2)
C2—C1—N1—Cd1175.4 (3)O3—Cd1—N4—N3162.1 (2)
C4—C5—N1—C1−0.4 (4)N1—Cd1—N4—N334.4 (3)
C6—C5—N1—C1179.2 (3)O2—Cd1—N4—N3−118.2 (2)
C4—C5—N1—Cd1−174.9 (2)O2—N5—O1—Cd1−0.8 (4)
C6—C5—N1—Cd14.7 (3)N2—Cd1—O1—N5−128.0 (3)
O1—Cd1—N1—C1−78.3 (3)N4—Cd1—O1—N5−59.5 (3)
N2—Cd1—N1—C1179.8 (3)O4—Cd1—O1—N569.8 (4)
N4—Cd1—N1—C1160.7 (2)O3—Cd1—O1—N575.5 (3)
O4—Cd1—N1—C171.7 (3)N1—Cd1—O1—N5163.5 (3)
O3—Cd1—N1—C121.3 (3)O2—Cd1—O1—N50.5 (3)
O2—Cd1—N1—C1−59.6 (3)O1—N5—O2—Cd10.8 (4)
O1—Cd1—N1—C595.8 (2)O1—Cd1—O2—N5−0.5 (3)
N2—Cd1—N1—C5−6.14 (19)N2—Cd1—O2—N571.4 (3)
N4—Cd1—N1—C5−25.2 (3)N4—Cd1—O2—N5127.0 (3)
O4—Cd1—N1—C5−114.2 (2)O4—Cd1—O2—N5−149.6 (3)
O3—Cd1—N1—C5−164.6 (2)O3—Cd1—O2—N5−107.3 (3)
O2—Cd1—N1—C5114.5 (2)N1—Cd1—O2—N5−24.9 (3)
N3—C12—N2—C6−176.1 (2)O4—N6—O3—Cd1−2.7 (4)
C11—C12—N2—C62.2 (4)O1—Cd1—O3—N6−174.7 (3)
N3—C12—N2—Cd19.4 (3)N2—Cd1—O3—N656.1 (4)
C11—C12—N2—Cd1−172.3 (2)N4—Cd1—O3—N6−46.3 (3)
C9—C6—N2—C12−1.7 (4)O4—Cd1—O3—N61.7 (3)
C5—C6—N2—C12177.5 (3)N1—Cd1—O3—N698.6 (3)
C9—C6—N2—Cd1173.0 (2)O2—Cd1—O3—N6−125.9 (3)
C5—C6—N2—Cd1−7.9 (3)O3—N6—O4—Cd12.8 (4)
O1—Cd1—N2—C1299.1 (2)O1—Cd1—O4—N65.5 (4)
N4—Cd1—N2—C12−13.1 (2)N2—Cd1—O4—N6−155.9 (3)
O4—Cd1—N2—C12−90.3 (2)N4—Cd1—O4—N6140.6 (3)
O3—Cd1—N2—C12−131.9 (3)O3—Cd1—O4—N6−1.7 (3)
N1—Cd1—N2—C12−178.1 (2)N1—Cd1—O4—N6−86.1 (3)
O2—Cd1—N2—C1250.7 (3)O2—Cd1—O4—N658.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2681).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y. M., Wang, Y. Q. & Ren, H.-X. (2010). Acta Cryst. E66, m663. [PMC free article] [PubMed]
  • Wang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography