PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2123.
Published online 2010 July 24. doi:  10.1107/S1600536810028874
PMCID: PMC3007324

6,14-Dibromo-2,11-dithia­[3.3]paracyclo­phane

Abstract

In the title compound, C16H14Br2S2 [systematic name: 12,52-dibromo-2,7-dithia-1,5(1,4)-dibenzenaocta­phane], the cen­troids of the two benzene rings are separated by 3.313 (5) Å. The crystal packing exhibits weak inter­molecular S(...)S contacts of 3.538 (2) Å.

Related literature

For the preparation of the title compound, see: Wang et al. (2003 [triangle], 2006 [triangle]). For a related structure, see: Huang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2123-scheme1.jpg

Experimental

Crystal data

  • C16H14Br2S2
  • M r = 430.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2123-efi1.jpg
  • a = 9.0563 (11) Å
  • b = 13.8931 (17) Å
  • c = 24.641 (3) Å
  • V = 3100.4 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.49 mm−1
  • T = 298 K
  • 0.26 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.330, T max = 0.610
  • 21950 measured reflections
  • 3372 independent reflections
  • 2150 reflections with I > 2σ(I)
  • R int = 0.12

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.115
  • S = 0.99
  • 3372 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028874/cv2739sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028874/cv2739Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xiang Gao Meng for the data collection.

supplementary crystallographic information

Comment

As a contribution to a structural study of dithia[3.3]paracyclophane derivatives with the bromine sustituents (Huang et al., 2010), herewith we present the crystal structure of the title compound (Fig. 1).

The short distance of 3.313 (5) Å between the centroids of two benzene rings is less than the normal packing distance (3.4 Å) between the aromatic rings in organic compounds, thus supporting potential transannular π-π interaction between the rings in the cyclophane unit.

Experimental

The dithiaparacyclophanes were prepared by coupling the corresponding pair of dithiol and dibromide under high dilution conditions (Wang et al., 2003, 2006). A solution with equimolar amounts of the dithiol and the dibromide in degassed THF (500 ml) was added dropwise under N2 over 12 h to a refluxing solution of K2CO3 (5 equiv) in EtOH (1.2 L). After an additional 2 h at the reflux temperature, the mixture was cooled and the solvent were removed. The resulting residue was treated with CH2Cl2(300 ml) and water (300 ml).The organic phase was separated, the aqueous extracted with CH2Cl2 three times. The combined organic layers were dried over Na2SO4, then solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2 petroleum ether (1:1, v/v) as eluent.

Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H =0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms, and (C—H =0.97 Å) and Uiso(H) =1.2Ueq(C) for methylene, and (C—H =0.96 Å) and Uiso(H)=1.5Ueq(C) for methyl.

Figures

Fig. 1.
A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C16H14Br2S2F(000) = 1696
Mr = 430.21Dx = 1.839 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5026 reflections
a = 9.0563 (11) Åθ = 2.8–25.5°
b = 13.8931 (17) ŵ = 5.49 mm1
c = 24.641 (3) ÅT = 298 K
V = 3100.4 (7) Å3Block, colourless
Z = 80.26 × 0.20 × 0.10 mm

Data collection

Bruker SMART APEX diffractometer3372 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
graphiteRint = 0.12
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.330, Tmax = 0.610k = −17→17
21950 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.01106 (5)0.31316 (4)0.233829 (17)0.05380 (18)
Br2−0.18330 (6)0.72155 (4)0.04515 (2)0.0638 (2)
C1−0.0858 (4)0.4030 (3)0.13260 (15)0.0325 (9)
C20.0281 (4)0.3739 (3)0.16606 (15)0.0324 (9)
C30.1766 (4)0.3880 (3)0.15182 (16)0.0364 (9)
H30.25090.36940.17570.044*
C40.2127 (4)0.4289 (3)0.10301 (17)0.0364 (9)
C50.0981 (4)0.4501 (3)0.06696 (15)0.0397 (10)
H50.11970.47260.03230.048*
C6−0.0453 (4)0.4379 (3)0.08239 (15)0.0366 (9)
H6−0.11940.45400.05790.044*
C70.3717 (4)0.4516 (3)0.0900 (2)0.0507 (11)
H7A0.41120.39840.06900.061*
H7B0.42600.45360.12390.061*
C80.3707 (5)0.6542 (3)0.1030 (2)0.0527 (12)
H8A0.43140.64330.13480.063*
H8B0.39860.71600.08780.063*
C90.2122 (4)0.6589 (3)0.12027 (16)0.0380 (10)
C100.1679 (4)0.6251 (3)0.16986 (17)0.0420 (10)
H100.23850.61040.19600.050*
C110.0198 (4)0.6126 (3)0.18176 (16)0.0353 (9)
H11−0.00710.58760.21530.042*
C12−0.0886 (4)0.6365 (3)0.14498 (15)0.0342 (9)
C13−0.0416 (5)0.6791 (3)0.09759 (17)0.0379 (10)
C140.1044 (5)0.6900 (3)0.08435 (17)0.0432 (10)
H140.13100.71810.05150.052*
C15−0.2488 (4)0.6110 (3)0.15519 (18)0.0492 (11)
H15A−0.29630.60220.12030.059*
H15B−0.29550.66590.17250.059*
C16−0.2467 (4)0.4062 (3)0.15006 (17)0.0435 (10)
H16A−0.27150.34610.16790.052*
H16B−0.30840.41200.11810.052*
S10.41002 (13)0.56115 (8)0.05360 (5)0.0539 (3)
S2−0.28742 (12)0.50583 (8)0.19606 (5)0.0497 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0655 (3)0.0599 (3)0.0360 (3)−0.0119 (2)−0.0004 (2)0.0092 (2)
Br20.0722 (4)0.0703 (4)0.0490 (3)0.0220 (3)−0.0132 (2)0.0041 (3)
C10.034 (2)0.030 (2)0.033 (2)−0.0036 (17)0.0022 (16)−0.0072 (17)
C20.037 (2)0.033 (2)0.0276 (19)−0.0034 (17)0.0013 (16)0.0008 (16)
C30.039 (2)0.032 (2)0.038 (2)0.0051 (18)−0.0051 (18)−0.0020 (18)
C40.035 (2)0.028 (2)0.046 (2)0.0032 (18)0.0047 (17)−0.0039 (18)
C50.050 (3)0.039 (2)0.030 (2)0.006 (2)0.0070 (18)−0.0010 (18)
C60.032 (2)0.043 (2)0.035 (2)0.0051 (19)−0.0032 (17)−0.0034 (19)
C70.034 (2)0.046 (3)0.072 (3)0.004 (2)0.014 (2)0.002 (2)
C80.040 (3)0.051 (3)0.067 (3)−0.006 (2)0.016 (2)−0.010 (2)
C90.039 (2)0.027 (2)0.047 (2)−0.0050 (18)0.0051 (19)−0.0080 (18)
C100.042 (3)0.041 (2)0.042 (2)0.003 (2)−0.0049 (19)−0.009 (2)
C110.039 (2)0.036 (2)0.031 (2)−0.0020 (18)0.0074 (17)−0.0042 (17)
C120.036 (2)0.033 (2)0.034 (2)0.0043 (18)0.0072 (17)−0.0033 (17)
C130.045 (2)0.031 (2)0.038 (2)0.0117 (19)−0.0023 (18)−0.0021 (18)
C140.055 (3)0.034 (2)0.040 (2)0.002 (2)0.011 (2)−0.0012 (19)
C150.038 (2)0.054 (3)0.056 (3)0.010 (2)0.007 (2)−0.004 (2)
C160.033 (2)0.048 (3)0.049 (2)−0.005 (2)0.002 (2)−0.006 (2)
S10.0477 (7)0.0482 (7)0.0658 (8)−0.0043 (6)0.0279 (6)−0.0069 (6)
S20.0453 (7)0.0557 (7)0.0481 (6)−0.0039 (6)0.0205 (5)−0.0097 (6)

Geometric parameters (Å, °)

Br1—C21.905 (4)C8—H8A0.9700
Br2—C131.914 (4)C8—H8B0.9700
C1—C61.379 (5)C9—C101.369 (6)
C1—C21.381 (5)C9—C141.387 (6)
C1—C161.519 (5)C10—C111.384 (5)
C2—C31.403 (5)C10—H100.9300
C3—C41.370 (5)C11—C121.377 (5)
C3—H30.9300C11—H110.9300
C4—C51.398 (5)C12—C131.377 (5)
C4—C71.508 (5)C12—C151.514 (6)
C5—C61.364 (5)C13—C141.370 (6)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—S21.809 (5)
C7—S11.800 (4)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—S21.827 (4)
C8—C91.498 (6)C16—H16A0.9700
C8—S11.811 (4)C16—H16B0.9700
C6—C1—C2116.1 (3)C10—C9—C8121.3 (4)
C6—C1—C16119.9 (4)C14—C9—C8120.5 (4)
C2—C1—C16123.8 (3)C9—C10—C11121.1 (4)
C1—C2—C3121.7 (3)C9—C10—H10119.5
C1—C2—Br1120.9 (3)C11—C10—H10119.5
C3—C2—Br1117.4 (3)C12—C11—C10121.4 (4)
C4—C3—C2120.4 (4)C12—C11—H11119.3
C4—C3—H3119.8C10—C11—H11119.3
C2—C3—H3119.8C11—C12—C13116.2 (3)
C3—C4—C5117.9 (4)C11—C12—C15121.2 (4)
C3—C4—C7120.1 (4)C13—C12—C15122.5 (4)
C5—C4—C7122.0 (4)C14—C13—C12123.2 (4)
C6—C5—C4120.3 (4)C14—C13—Br2116.9 (3)
C6—C5—H5119.9C12—C13—Br2119.8 (3)
C4—C5—H5119.9C13—C14—C9119.5 (4)
C5—C6—C1123.2 (4)C13—C14—H14120.2
C5—C6—H6118.4C9—C14—H14120.2
C1—C6—H6118.4C12—C15—S2117.8 (3)
C4—C7—S1117.8 (3)C12—C15—H15A107.9
C4—C7—H7A107.9S2—C15—H15A107.9
S1—C7—H7A107.9C12—C15—H15B107.9
C4—C7—H7B107.9S2—C15—H15B107.9
S1—C7—H7B107.9H15A—C15—H15B107.2
H7A—C7—H7B107.2C1—C16—S2113.0 (3)
C9—C8—S1114.2 (3)C1—C16—H16A109.0
C9—C8—H8A108.7S2—C16—H16A109.0
S1—C8—H8A108.7C1—C16—H16B109.0
C9—C8—H8B108.7S2—C16—H16B109.0
S1—C8—H8B108.7H16A—C16—H16B107.8
H8A—C8—H8B107.6C7—S1—C8103.3 (2)
C10—C9—C14118.0 (4)C15—S2—C16103.2 (2)
C6—C1—C2—C36.1 (5)C9—C10—C11—C12−2.1 (6)
C16—C1—C2—C3−168.6 (4)C10—C11—C12—C13−4.2 (6)
C6—C1—C2—Br1−174.1 (3)C10—C11—C12—C15172.1 (4)
C16—C1—C2—Br111.2 (5)C11—C12—C13—C146.0 (6)
C1—C2—C3—C4−1.9 (6)C15—C12—C13—C14−170.3 (4)
Br1—C2—C3—C4178.3 (3)C11—C12—C13—Br2−176.7 (3)
C2—C3—C4—C5−4.0 (6)C15—C12—C13—Br27.0 (5)
C2—C3—C4—C7174.8 (4)C12—C13—C14—C9−1.4 (6)
C3—C4—C5—C65.7 (6)Br2—C13—C14—C9−178.8 (3)
C7—C4—C5—C6−173.1 (4)C10—C9—C14—C13−5.1 (6)
C4—C5—C6—C1−1.4 (6)C8—C9—C14—C13169.4 (4)
C2—C1—C6—C5−4.4 (5)C11—C12—C15—S2−28.6 (5)
C16—C1—C6—C5170.4 (4)C13—C12—C15—S2147.5 (3)
C3—C4—C7—S1−141.7 (3)C6—C1—C16—S2−100.7 (4)
C5—C4—C7—S137.1 (5)C2—C1—C16—S273.7 (5)
S1—C8—C9—C10104.9 (4)C4—C7—S1—C870.3 (4)
S1—C8—C9—C14−69.4 (5)C9—C8—S1—C7−64.4 (4)
C14—C9—C10—C116.8 (6)C12—C15—S2—C16−74.8 (3)
C8—C9—C10—C11−167.6 (4)C1—C16—S2—C1562.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2739).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, S. & Wang, Q. (2010). Acta Cryst. E66, o1993. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Wang, W.-L., Xu, J. & Lai, Y.-H. (2003). Org. Lett.5, 2765–2768. [PubMed]
  • Wang, W.-L., Xu, J., Sun, Z., Zhang, X., Lu, Y. & Lai, Y.-H. (2006). Macromolecules, 39, 7277–7285.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography