PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1900.
Published online 2010 July 3. doi:  10.1107/S1600536810024700
PMCID: PMC3007321

N-(4-Methyl­phen­yl)-6-(pyrazol-1-yl)pyridazin-3-amine

Abstract

In the title compound, C14H13N5, the pyrazole ring is disordered over two orientations in a 0.571 (10):0.429 (10) ratio and the dihedral angle between the pyridazine ring and the benzene ring is 28.07 (10)°. In the crystal, pairs of N—H(...)N and C—H(...)N hydrogen bonds link the mol­ecules into dimers, with the aid of a crystallographic twofold axis. The packing is consolidated by further C—H(...)N bonds and weak C—H(...)π inter­actions.

Related literature

For related structures, see: Ather et al. (2009 [triangle], 2010a [triangle],b [triangle],c [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1900-scheme1.jpg

Experimental

Crystal data

  • C14H13N5
  • M r = 251.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1900-efi1.jpg
  • a = 31.8677 (17) Å
  • b = 7.9408 (5) Å
  • c = 10.8446 (7) Å
  • β = 109.715 (3)°
  • V = 2583.4 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.32 × 0.18 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.982, T max = 0.988
  • 9293 measured reflections
  • 2336 independent reflections
  • 1384 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.176
  • S = 1.03
  • 2336 reflections
  • 156 parameters
  • 11 restraints
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024700/hb5514sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024700/hb5514Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation to pyrazolylpyridazine derivatives (Ather et al., 2009, 2010a, 2010b, 2010c), the title compound (I, Fig. 1) is being reported here.

The title compound is reaction product of 3-chloro-6-(1H-pyrazol-1-yl)pyridazine and 4-toluidine. There are three cyclic rings in the final product. In (I), the pyrazole ring except adjoining N-atom and H-atoms of the only methyl group are disordered over two set of sites with occupancy ratio of 0.571 (10):0.429 (10). The majority group A (N4/N5B/C12B/C13B/C14B), the pyridazine ring B (C8—C11/N3/N2) and the 4-toludine group C (N1/C1—C7) are planar with r. m. s. deviations of 0.0431, 0.0175 and 0.0153 Å respectively. The miniority disordered group D (N4/N5A/C12A/C13A/C14A) is also planar with r. m. s. deviation of 0.0555 Å. The dihedral angle between A/B, A/C and B/C is 6.46 (24)°, 32.15 (28)° and 28.07 (10)° respectively. The dihedral angle between the disordered groups A/D is 17.72 (34)°. There exist intermolecular H-bondings of N—H···N and C—H···N types (Table 1). The molecules are stabilized in the form of dimers. In dimers, one ring motif of R22(8) and two ring motifs of R22(7) types (Bernstein et al., 1995) are present (Fig. 2). C—H···π interaction (Table 1) also play role in stabilizing the molecules.

Experimental

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine (1.68 g, 9.33 mmol) and 4-toluidine (1 g, 9.34 mmol) were refluxed in dimethylformamide (DMF) for 2 h. The reaction mixture was concentrated under vacuum and poured in cold water. The precipitates obtained were filtered, washed with distilled water and dried to give 74.0% yield. The product obtained was purified by column chromatography and recrystallized in ethanol to afford light brown needles of title compound (I).

Refinement

The bond distances, bond angles and thermal elipsoids present in the pyrazol ring showed that there is disorder. Similarly difference Fourier map showed that H-atoms of methyl are also disordered. For the disordered heavy atoms the bond distances and bond angles are best fitted according to the known structures (Ather et al., 2009, 2010a,b,c). The disordered atoms were refined using equal anisotropic thermal parameters.

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of (I) showing the major orientation of the pyrazole ring with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
Fig. 2.
View of (I) showing the minor orientation of the pyrazole ring with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
Fig. 3.
Packing diagram of (I), showing that the dimers are formed with ring motifs.

Crystal data

C14H13N5F(000) = 1056
Mr = 251.29Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1384 reflections
a = 31.8677 (17) Åθ = 2.7–25.2°
b = 7.9408 (5) ŵ = 0.08 mm1
c = 10.8446 (7) ÅT = 296 K
β = 109.715 (3)°Needle, light brown
V = 2583.4 (3) Å30.32 × 0.18 × 0.16 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer2336 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
graphiteRint = 0.059
Detector resolution: 7.5 pixels mm-1θmax = 25.2°, θmin = 2.7°
ω scansh = −38→38
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −9→9
Tmin = 0.982, Tmax = 0.988l = −11→13
9293 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0773P)2 + 1.8092P] where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.40 e Å3
11 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N1−0.01706 (7)0.2747 (3)0.5655 (2)0.0510 (9)
N20.04995 (8)0.3448 (3)0.7127 (2)0.0510 (10)
N30.09382 (8)0.3783 (4)0.7500 (2)0.0524 (10)
N40.15970 (9)0.4068 (4)0.7102 (3)0.0707 (8)
N5B0.18195 (19)0.4362 (12)0.6217 (6)0.0707 (8)0.571 (10)
C1−0.05015 (9)0.2122 (4)0.4533 (3)0.0442 (10)
C2−0.04181 (10)0.1187 (4)0.3561 (3)0.0505 (11)
C3−0.07680 (10)0.0626 (4)0.2491 (3)0.0530 (11)
C4−0.12061 (10)0.0918 (4)0.2371 (3)0.0549 (11)
C5−0.12852 (10)0.1783 (5)0.3377 (3)0.0559 (13)
C6−0.09415 (9)0.2382 (4)0.4439 (3)0.0509 (11)
C7−0.15858 (7)0.0306 (5)0.1201 (2)0.0777 (14)
C80.02676 (6)0.3091 (3)0.58716 (18)0.0442 (10)
C90.04727 (6)0.3151 (3)0.49129 (18)0.0533 (11)
C100.09141 (10)0.3458 (4)0.5291 (3)0.0572 (13)
C110.11362 (9)0.3742 (4)0.6618 (3)0.0502 (11)
C12B0.2222 (2)0.4805 (14)0.6947 (7)0.0707 (8)0.571 (10)
C13B0.2269 (2)0.4969 (12)0.8208 (8)0.0707 (8)0.571 (10)
C14B0.1867 (3)0.4636 (14)0.8260 (9)0.0707 (8)0.571 (10)
C13A0.2274 (3)0.4340 (16)0.8474 (10)0.0707 (8)0.429 (10)
C14A0.1844 (4)0.4271 (19)0.8420 (11)0.0707 (8)0.429 (10)
N5A0.1847 (3)0.3606 (15)0.6367 (9)0.0707 (8)0.429 (10)
C12A0.2262 (3)0.3897 (18)0.7145 (9)0.0707 (8)0.429 (10)
H3−0.070560.003360.183330.0638*
H7D−0.162310.105270.047530.1168*0.571 (10)
H5−0.157780.196570.333650.0670*
H6−0.100530.296600.509780.0610*
H90.030740.298200.403410.0639*
H100.106410.347810.468970.0688*
H12B0.245300.498670.661810.0847*0.571 (10)
H13B0.252490.525370.889740.0847*0.571 (10)
H14B0.178430.477640.899860.0847*0.571 (10)
H7E−0.185510.028400.141200.1168*0.571 (10)
H7F−0.15208−0.080700.097090.1168*0.571 (10)
H1−0.025830.294290.630890.0611*
H2−0.012620.093670.362740.0605*
H7A−0.17227−0.065430.144650.1168*0.429 (10)
H7B−0.14740−0.000410.051420.1168*0.429 (10)
H7C−0.180230.118820.089760.1168*0.429 (10)
H12A0.251100.383070.688550.0847*0.429 (10)
H13A0.252310.460820.919290.0847*0.429 (10)
H14A0.173660.434410.911630.0847*0.429 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0412 (13)0.073 (2)0.0373 (15)−0.0006 (13)0.0111 (11)−0.0051 (13)
N20.0433 (14)0.068 (2)0.0398 (15)−0.0029 (13)0.0117 (11)0.0001 (12)
N30.0446 (14)0.070 (2)0.0410 (15)−0.0049 (13)0.0122 (12)0.0027 (13)
N40.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
N5B0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C10.0422 (16)0.052 (2)0.0352 (16)−0.0011 (14)0.0090 (13)0.0037 (14)
C20.0428 (16)0.060 (2)0.0476 (19)0.0018 (15)0.0137 (14)−0.0025 (16)
C30.057 (2)0.060 (2)0.0432 (18)−0.0024 (16)0.0186 (15)−0.0079 (16)
C40.0505 (18)0.066 (2)0.0430 (19)−0.0077 (16)0.0088 (15)−0.0011 (16)
C50.0421 (17)0.071 (3)0.054 (2)−0.0001 (16)0.0155 (15)−0.0004 (17)
C60.0459 (17)0.066 (2)0.0407 (18)0.0012 (16)0.0145 (14)0.0004 (15)
C70.057 (2)0.101 (3)0.066 (2)−0.013 (2)0.0088 (18)−0.019 (2)
C80.0447 (16)0.047 (2)0.0388 (17)0.0043 (14)0.0112 (13)0.0033 (14)
C90.0527 (18)0.071 (2)0.0351 (17)−0.0060 (16)0.0133 (14)−0.0021 (15)
C100.0534 (19)0.076 (3)0.0466 (19)−0.0070 (17)0.0226 (15)−0.0046 (17)
C110.0452 (17)0.064 (2)0.0416 (18)−0.0003 (15)0.0148 (14)0.0035 (16)
C12B0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C13B0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C14B0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C13A0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C14A0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
N5A0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)
C12A0.0481 (9)0.106 (2)0.0581 (12)−0.0103 (12)0.0181 (8)0.0075 (13)

Geometric parameters (Å, °)

N1—C11.405 (4)C12A—C13A1.472 (14)
N1—C81.363 (3)C12B—C13B1.331 (11)
N2—N31.344 (4)C13A—C14A1.353 (17)
N2—C81.342 (3)C13B—C14B1.328 (12)
N3—C111.312 (4)C2—H20.9300
N4—N5B1.392 (7)C3—H30.9300
N4—C111.407 (4)C5—H50.9300
N4—C14B1.339 (10)C6—H60.9300
N4—N5A1.354 (10)C7—H7D0.9600
N4—C14A1.389 (12)C7—H7E0.9600
N5A—C12A1.327 (14)C7—H7F0.9600
N5B—C12B1.308 (10)C7—H7A0.9600
N1—H10.8600C7—H7B0.9600
C1—C61.387 (4)C7—H7C0.9600
C1—C21.386 (4)C9—H90.9300
C2—C31.384 (4)C10—H100.9300
C3—C41.377 (5)C12A—H12A0.9300
C4—C51.382 (5)C12B—H12B0.9300
C4—C71.508 (4)C13A—H13A0.9300
C5—C61.379 (4)C13B—H13B0.9300
C8—C91.403 (3)C14A—H14A0.9300
C9—C101.348 (4)C14B—H14B0.9300
C10—C111.391 (4)
C1—N1—C8130.3 (2)C1—C2—H2120.00
N3—N2—C8120.5 (2)C3—C2—H2120.00
N2—N3—C11118.9 (2)C2—C3—H3119.00
N5B—N4—C11119.0 (4)C4—C3—H3119.00
N5B—N4—C14B105.9 (6)C4—C5—H5119.00
C11—N4—C14B132.2 (5)C6—C5—H5119.00
N5A—N4—C11118.6 (5)C1—C6—H6120.00
C11—N4—C14A124.3 (6)C5—C6—H6120.00
N5A—N4—C14A113.3 (7)C4—C7—H7D109.00
N4—N5A—C12A103.7 (8)C4—C7—H7E109.00
N4—N5B—C12B104.6 (5)C4—C7—H7F109.00
C8—N1—H1115.00C4—C7—H7A109.00
C1—N1—H1115.00C4—C7—H7B109.00
C2—C1—C6118.2 (3)C4—C7—H7C109.00
N1—C1—C6117.1 (3)H7D—C7—H7E109.00
N1—C1—C2124.6 (3)H7D—C7—H7F109.00
C1—C2—C3120.2 (3)H7E—C7—H7F110.00
C2—C3—C4122.0 (3)H7A—C7—H7B110.00
C3—C4—C5117.3 (3)H7A—C7—H7C109.00
C5—C4—C7121.1 (3)H7B—C7—H7C109.00
C3—C4—C7121.7 (3)C8—C9—H9121.00
C4—C5—C6121.7 (3)C10—C9—H9121.00
C1—C6—C5120.6 (3)C9—C10—H10121.00
N2—C8—C9120.7 (2)C11—C10—H10121.00
N1—C8—C9125.82 (18)C13A—C12A—H12A125.00
N1—C8—N2113.5 (2)N5A—C12A—H12A125.00
C8—C9—C10118.7 (2)C13B—C12B—H12B123.00
C9—C10—C11117.3 (3)N5B—C12B—H12B123.00
N4—C11—C10121.2 (3)C14A—C13A—H13A128.00
N3—C11—C10123.8 (3)C12A—C13A—H13A127.00
N3—C11—N4114.9 (3)C14B—C13B—H13B128.00
N5A—C12A—C13A110.8 (9)C12B—C13B—H13B128.00
N5B—C12B—C13B113.3 (7)C13A—C14A—H14A127.00
C12A—C13A—C14A104.9 (9)N4—C14A—H14A127.00
C12B—C13B—C14B104.4 (7)C13B—C14B—H14B125.00
N4—C14A—C13A105.3 (9)N4—C14B—H14B125.00
N4—C14B—C13B110.6 (8)
C8—N1—C1—C223.6 (5)N1—C1—C2—C3180.0 (3)
C8—N1—C1—C6−160.4 (3)C6—C1—C2—C33.9 (5)
C1—N1—C8—N2−171.0 (3)N1—C1—C6—C5−179.0 (3)
C1—N1—C8—C911.4 (4)C2—C1—C6—C5−2.7 (5)
C8—N2—N3—C11−0.5 (4)C1—C2—C3—C4−2.2 (5)
N3—N2—C8—N1178.7 (2)C2—C3—C4—C5−0.8 (5)
N3—N2—C8—C9−3.5 (4)C2—C3—C4—C7179.9 (3)
N2—N3—C11—N4−178.5 (3)C3—C4—C5—C62.1 (5)
N2—N3—C11—C103.6 (5)C7—C4—C5—C6−178.6 (3)
C11—N4—N5B—C12B173.1 (6)C4—C5—C6—C1−0.4 (5)
C14B—N4—N5B—C12B10.1 (10)N1—C8—C9—C10−178.0 (3)
N5B—N4—C11—N3−168.2 (5)N2—C8—C9—C104.6 (4)
N5B—N4—C11—C109.8 (6)C8—C9—C10—C11−1.7 (4)
C14B—N4—C11—N3−10.4 (8)C9—C10—C11—N3−2.4 (5)
C14B—N4—C11—C10167.5 (7)C9—C10—C11—N4179.8 (3)
N5B—N4—C14B—C13B−11.5 (10)N5B—C12B—C13B—C14B−1.2 (13)
C11—N4—C14B—C13B−171.3 (6)C12B—C13B—C14B—N48.0 (12)
N4—N5B—C12B—C13B−5.6 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N4/N5B/C12B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.122.982 (3)178
C6—H6···N3i0.932.623.498 (4)157
C14B—H14B···N5Bii0.932.473.357 (11)160
C5—H5···Cg1iii0.932.993.527 (5)118

Symmetry codes: (i) −x, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5514).

References

  • Ather, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography