PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2128.
Published online 2010 July 31. doi:  10.1107/S1600536810029144
PMCID: PMC3007305

1-Ethyl­sulfinyl-2-(4-iodo­phen­yl)naphtho­[2,1-b]furan

Abstract

In the title compound, C20H15IO2S, the 4-iodo­phenyl ring makes a dihedral angle of 44.21 (7)° with the plane of the naphtho­furan fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H(...)O and C—H(...)π inter­actions.

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Einhorn et al. (1984 [triangle]); Hranjec et al. (2003 [triangle]); Mahadevan & Vaidya (2003 [triangle]). For the structures of related 2-aryl-1-(methyl­sulfin­yl)naphtho­[2,1-b]furan derivatives, see: Choi et al. (2006 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2128-scheme1.jpg

Experimental

Crystal data

  • C20H15IO2S
  • M r = 446.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2128-efi1.jpg
  • a = 9.1240 (5) Å
  • b = 12.4302 (6) Å
  • c = 15.8520 (8) Å
  • β = 105.899 (2)°
  • V = 1729.05 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.98 mm−1
  • T = 174 K
  • 0.27 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.619, T max = 0.825
  • 14865 measured reflections
  • 3937 independent reflections
  • 3511 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.084
  • S = 1.09
  • 3937 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −1.28 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810029144/ds2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029144/ds2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Compounds containing a naphthofuran moiety show diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 2-aryl-1-(methylsulfinyl)naphtho[2,1-b]furan analogues (Choi et al., 2006, 2010), we report the crystal structure of the title compound (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.044 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the naphthofuran plane and the 4-iodophenyl ring is 44.21 (7)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the methyl H atom of the ethyl group and the oxygen of the S═O unit, with a C20—H20C···O2i (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the methylene H atom of the ethyl group and the 4-iodophenyl ring of an adjacent molecule, with a C19—H19B···Cgii (Table 1; Cg is the centroid of the C13–C18 4-iodophenyl ring).

Experimental

77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 1-ethylsulfanyl-2-(4-iodophenyl)naphtho [2,1-b]furan (301 mg, 0.7 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 74%, m.p. 440–441 K; Rf = 0.53 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 0.99 Å for methylene, and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: ?? (i) - x + 1, - y + 2, - z + 1; (ii) ...

Crystal data

C20H15IO2SF(000) = 880
Mr = 446.28Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1240 (5) ÅCell parameters from 3937 reflections
b = 12.4302 (6) Åθ = 2.1–27.5°
c = 15.8520 (8) ŵ = 1.98 mm1
β = 105.899 (2)°T = 174 K
V = 1729.05 (15) Å3Block, colourless
Z = 40.27 × 0.23 × 0.10 mm

Data collection

Bruker SMART APEXII CCD diffractometer3937 independent reflections
Radiation source: rotating anode3511 reflections with I > 2σ(I)
graphite multilayerRint = 0.038
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.1°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −16→13
Tmin = 0.619, Tmax = 0.825l = −20→19
14865 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.084H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0453P)2 + 0.6527P] where P = (Fo2 + 2Fc2)/3
3937 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −1.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.00380 (2)0.277333 (14)0.601089 (11)0.03776 (9)
S0.45899 (6)0.76556 (4)0.55355 (4)0.02160 (13)
O10.70925 (17)0.52550 (13)0.67638 (10)0.0239 (3)
O20.48599 (18)0.87424 (14)0.59467 (10)0.0285 (4)
C10.6068 (2)0.67815 (18)0.60936 (13)0.0205 (4)
C20.7714 (2)0.69096 (19)0.63592 (13)0.0213 (4)
C30.8780 (3)0.77275 (18)0.62844 (15)0.0238 (5)
C40.8389 (3)0.8777 (2)0.59683 (15)0.0275 (5)
H40.73480.89880.57980.033*
C50.9491 (3)0.9498 (2)0.59032 (17)0.0364 (6)
H50.92061.01960.56740.044*
C61.1048 (3)0.9209 (3)0.61747 (18)0.0406 (7)
H61.18070.97120.61280.049*
C71.1455 (3)0.8211 (3)0.65028 (16)0.0359 (6)
H71.25050.80260.66880.043*
C81.0358 (3)0.7438 (2)0.65766 (15)0.0289 (5)
C91.0814 (3)0.6397 (2)0.69298 (15)0.0311 (5)
H91.18680.62210.70950.037*
C100.9800 (3)0.5649 (2)0.70387 (15)0.0292 (5)
H101.01130.49670.72970.035*
C110.8256 (2)0.59444 (19)0.67454 (14)0.0230 (4)
C120.5766 (2)0.57813 (18)0.63581 (13)0.0206 (4)
C130.4390 (2)0.51475 (17)0.62874 (13)0.0203 (4)
C140.4302 (3)0.44819 (18)0.69846 (14)0.0242 (5)
H140.51060.44850.75120.029*
C150.3056 (3)0.38198 (19)0.69132 (15)0.0259 (5)
H150.30000.33720.73890.031*
C160.1890 (3)0.38172 (18)0.61392 (14)0.0234 (4)
C170.1941 (2)0.44740 (18)0.54422 (14)0.0234 (4)
H170.11270.44690.49180.028*
C180.3187 (2)0.51365 (18)0.55162 (14)0.0225 (4)
H180.32270.55890.50400.027*
C190.5111 (3)0.77015 (18)0.45098 (15)0.0274 (5)
H19A0.62120.78600.46300.033*
H19B0.49140.69920.42160.033*
C200.4199 (4)0.8559 (2)0.39126 (19)0.0442 (7)
H20A0.31110.83890.37790.066*
H20B0.45060.85850.33670.066*
H20C0.43910.92600.42060.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.04151 (13)0.03477 (14)0.03818 (12)−0.01862 (7)0.01291 (8)−0.00299 (6)
S0.0202 (3)0.0193 (3)0.0249 (3)0.0019 (2)0.0054 (2)−0.0001 (2)
O10.0217 (7)0.0252 (8)0.0241 (8)0.0026 (6)0.0052 (6)0.0041 (6)
O20.0315 (9)0.0215 (9)0.0344 (9)0.0020 (7)0.0120 (7)−0.0055 (6)
C10.0198 (10)0.0248 (11)0.0174 (9)0.0003 (9)0.0061 (7)−0.0011 (8)
C20.0201 (10)0.0270 (11)0.0173 (10)0.0010 (9)0.0059 (7)−0.0020 (8)
C30.0231 (11)0.0301 (13)0.0204 (10)−0.0055 (9)0.0097 (8)−0.0048 (9)
C40.0302 (11)0.0277 (12)0.0269 (11)−0.0060 (10)0.0118 (9)−0.0060 (9)
C50.0441 (15)0.0345 (15)0.0338 (13)−0.0145 (12)0.0158 (11)−0.0081 (11)
C60.0355 (14)0.0529 (18)0.0376 (14)−0.0217 (13)0.0169 (11)−0.0139 (13)
C70.0257 (12)0.0539 (18)0.0304 (13)−0.0126 (12)0.0114 (9)−0.0121 (12)
C80.0221 (10)0.0446 (14)0.0212 (11)−0.0045 (10)0.0077 (8)−0.0077 (10)
C90.0195 (10)0.0498 (16)0.0232 (11)0.0065 (11)0.0045 (8)−0.0061 (11)
C100.0234 (11)0.0410 (14)0.0221 (11)0.0094 (10)0.0044 (8)−0.0018 (10)
C110.0206 (10)0.0285 (12)0.0201 (10)0.0004 (9)0.0060 (7)−0.0013 (8)
C120.0205 (10)0.0217 (11)0.0193 (10)0.0020 (8)0.0048 (7)−0.0007 (8)
C130.0235 (10)0.0186 (10)0.0203 (10)0.0004 (8)0.0085 (8)−0.0001 (8)
C140.0264 (11)0.0254 (12)0.0198 (10)0.0012 (9)0.0045 (8)0.0012 (8)
C150.0330 (12)0.0230 (12)0.0232 (11)−0.0001 (9)0.0105 (9)0.0035 (9)
C160.0264 (11)0.0195 (11)0.0265 (11)−0.0031 (9)0.0110 (8)−0.0029 (9)
C170.0237 (10)0.0262 (11)0.0205 (10)0.0012 (9)0.0065 (8)−0.0024 (9)
C180.0261 (10)0.0236 (11)0.0191 (10)0.0006 (9)0.0083 (8)0.0029 (8)
C190.0360 (13)0.0250 (13)0.0207 (11)0.0006 (10)0.0067 (9)0.0010 (9)
C200.0500 (17)0.0410 (16)0.0373 (15)0.0042 (14)0.0045 (12)0.0157 (12)

Geometric parameters (Å, °)

I—C162.096 (2)C9—C101.356 (4)
S—O21.4908 (18)C9—H90.9500
S—C11.769 (2)C10—C111.406 (3)
S—C191.816 (3)C10—H100.9500
O1—C111.371 (3)C12—C131.460 (3)
O1—C121.371 (2)C13—C141.401 (3)
C1—C121.364 (3)C13—C181.402 (3)
C1—C21.453 (3)C14—C151.382 (3)
C2—C111.376 (3)C14—H140.9500
C2—C31.434 (3)C15—C161.386 (3)
C3—C41.407 (3)C15—H150.9500
C3—C81.432 (3)C16—C171.385 (3)
C4—C51.372 (4)C17—C181.382 (3)
C4—H40.9500C17—H170.9500
C5—C61.413 (4)C18—H180.9500
C5—H50.9500C19—C201.515 (3)
C6—C71.358 (4)C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—C81.414 (4)C20—H20A0.9800
C7—H70.9500C20—H20B0.9800
C8—C91.426 (4)C20—H20C0.9800
O2—S—C1109.02 (10)O1—C11—C10122.8 (2)
O2—S—C19108.10 (10)C2—C11—C10125.5 (2)
C1—S—C1996.68 (11)C1—C12—O1110.63 (18)
C11—O1—C12106.32 (17)C1—C12—C13135.2 (2)
C12—C1—C2106.90 (19)O1—C12—C13114.11 (18)
C12—C1—S121.54 (16)C14—C13—C18118.8 (2)
C2—C1—S131.56 (17)C14—C13—C12119.50 (18)
C11—C2—C3119.1 (2)C18—C13—C12121.60 (19)
C11—C2—C1104.5 (2)C15—C14—C13120.7 (2)
C3—C2—C1136.4 (2)C15—C14—H14119.6
C4—C3—C8118.8 (2)C13—C14—H14119.6
C4—C3—C2125.1 (2)C14—C15—C16119.2 (2)
C8—C3—C2116.1 (2)C14—C15—H15120.4
C5—C4—C3120.8 (2)C16—C15—H15120.4
C5—C4—H4119.6C17—C16—C15121.3 (2)
C3—C4—H4119.6C17—C16—I119.33 (16)
C4—C5—C6120.5 (3)C15—C16—I119.35 (17)
C4—C5—H5119.7C18—C17—C16119.3 (2)
C6—C5—H5119.7C18—C17—H17120.3
C7—C6—C5119.7 (2)C16—C17—H17120.3
C7—C6—H6120.2C17—C18—C13120.6 (2)
C5—C6—H6120.2C17—C18—H18119.7
C6—C7—C8121.8 (3)C13—C18—H18119.7
C6—C7—H7119.1C20—C19—S110.37 (19)
C8—C7—H7119.1C20—C19—H19A109.6
C7—C8—C9120.8 (2)S—C19—H19A109.6
C7—C8—C3118.3 (3)C20—C19—H19B109.6
C9—C8—C3120.9 (2)S—C19—H19B109.6
C10—C9—C8122.4 (2)H19A—C19—H19B108.1
C10—C9—H9118.8C19—C20—H20A109.5
C8—C9—H9118.8C19—C20—H20B109.5
C9—C10—C11115.8 (2)H20A—C20—H20B109.5
C9—C10—H10122.1C19—C20—H20C109.5
C11—C10—H10122.1H20A—C20—H20C109.5
O1—C11—C2111.62 (18)H20B—C20—H20C109.5
O2—S—C1—C12132.48 (18)C3—C2—C11—O1−179.95 (19)
C19—S—C1—C12−115.73 (19)C1—C2—C11—O1−1.9 (2)
O2—S—C1—C2−47.7 (2)C3—C2—C11—C10−3.9 (3)
C19—S—C1—C264.1 (2)C1—C2—C11—C10174.1 (2)
C12—C1—C2—C111.5 (2)C9—C10—C11—O1176.2 (2)
S—C1—C2—C11−178.31 (17)C9—C10—C11—C20.6 (3)
C12—C1—C2—C3179.1 (2)C2—C1—C12—O1−0.7 (2)
S—C1—C2—C3−0.8 (4)S—C1—C12—O1179.19 (14)
C11—C2—C3—C4−174.8 (2)C2—C1—C12—C13−178.5 (2)
C1—C2—C3—C47.9 (4)S—C1—C12—C131.3 (4)
C11—C2—C3—C83.8 (3)C11—O1—C12—C1−0.5 (2)
C1—C2—C3—C8−173.5 (2)C11—O1—C12—C13177.89 (17)
C8—C3—C4—C52.9 (3)C1—C12—C13—C14−143.3 (3)
C2—C3—C4—C5−178.6 (2)O1—C12—C13—C1438.9 (3)
C3—C4—C5—C6−1.7 (4)C1—C12—C13—C1840.6 (4)
C4—C5—C6—C70.0 (4)O1—C12—C13—C18−137.2 (2)
C5—C6—C7—C80.5 (4)C18—C13—C14—C150.4 (3)
C6—C7—C8—C9−179.5 (2)C12—C13—C14—C15−175.7 (2)
C6—C7—C8—C30.7 (4)C13—C14—C15—C160.2 (4)
C4—C3—C8—C7−2.4 (3)C14—C15—C16—C17−0.9 (4)
C2—C3—C8—C7178.9 (2)C14—C15—C16—I177.76 (17)
C4—C3—C8—C9177.9 (2)C15—C16—C17—C180.7 (3)
C2—C3—C8—C9−0.8 (3)I—C16—C17—C18−177.86 (17)
C7—C8—C9—C10177.7 (2)C16—C17—C18—C130.0 (3)
C3—C8—C9—C10−2.6 (4)C14—C13—C18—C17−0.6 (3)
C8—C9—C10—C112.7 (3)C12—C13—C18—C17175.5 (2)
C12—O1—C11—C21.5 (2)O2—S—C19—C20−57.7 (2)
C12—O1—C11—C10−174.6 (2)C1—S—C19—C20−170.25 (19)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 4-iodophenyl ring.
D—H···AD—HH···AD···AD—H···A
C20—H20C···O2i0.982.603.454 (4)145
C19—H19B···Cgii0.992.773.501 (3)131

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2042).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5625–o5626.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1012. [PMC free article] [PubMed]
  • Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem 19, 405–410.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319–1324. [PubMed]
  • Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci 65, 128–134.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography