PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2031.
Published online 2010 July 17. doi:  10.1107/S160053681002739X
PMCID: PMC3007302

N-{4-[(4-Methyl­phen­yl)sulfamo­yl]phen­yl}acetamide

Abstract

The title mol­ecule, C15H16N2O3S, has a twisted U-shaped conformation. The twist occurs in the central C—S(=O)2N(H)—C unit with the C—S—N—C torsion angle being −58.38 (14)°. The benzene rings lie to the same side of the mol­ecule and form a dihedral angle of 67.03 (10)°. The crystal packing features N—H(...)O hydrogen bonding, which leads to supra­molecular chains with a tubular topology along the b axis. Intra­molecular C—H(...)O inter­actions are also observed.

Related literature

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998 [triangle]); Kazmierski et al. (2004 [triangle]). For related structures, see: Khan et al. (2010 [triangle]); Sharif et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2031-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O3S
  • M r = 304.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2031-efi1.jpg
  • a = 8.2224 (3) Å
  • b = 8.3878 (3) Å
  • c = 13.0796 (5) Å
  • α = 71.482 (2)°
  • β = 75.749 (2)°
  • γ = 61.265 (1)°
  • V = 745.27 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 K
  • 0.23 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.887, T max = 0.951
  • 12704 measured reflections
  • 3374 independent reflections
  • 2918 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.124
  • S = 1.04
  • 3374 reflections
  • 198 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002739X/pv2305sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002739X/pv2305Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

supplementary crystallographic information

Comment

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, (I), was investigated.

To a first approximation, the molecule of (I), Fig. 1, has a twisted U-shaped conformation with the two benzene residues projecting to the same side of the molecule with reference to the central S(═O)2N moiety but, being splayed with respect to each other. The dihedral angle formed between the two benzene rings is 67.03 (10) ° and the C1–N1–S1–C8 torsion angle of -58.38 (14) ° indicates a twist in the molecule. Both S-bound O atoms lie to one side of the S-bound benzene ring [the O1–S1–C8–C9 torsion angle = 169.12 (13) ° and O2–S1–C8–C9 = 39.25 (15) °], and the N1 atom to the other [N1–S1–C8–C9 = -73.19 (15) °]. The amide group is co-planar with the benzene ring to which it is attached as seen in the C10–C11—N2–C14 torsion angle of 7.2 (3) °.

The formation of N–H···O hydrogen bonds dominate the crystal packing, Table 1. Thus, the sulfamoyl-N1–H hydrogen bonds to the amide-O, and the amide-N2–H hydrogen bonds to a sulfamoyl-O2 atom; the sulfamoyl-O1 atom forms intramolecular C–H···O interactions as does the amide-O3 atom, Table 1. The N–H···O hydrogen bonds result in the formation of a supramolecular chain along the b axis with a tubular topology, Fig. 2. These assemble into layers in the ab plane. Interactions between layers are of the type π···π [ring centroid(C1–C6)···ring centroid(C1–C6)i = 3.8185 (13) for i: 1 - x, -y, 2 - z], Fig. 3.

Experimental

A mixture of 4-methylaniline (250 mg, 2.33 mmol) and 4-(acetylamino)benzenesulfonyl chloride (545 mg, 2.33 mmol) in distilled water (25 ml) was stirred, while maintaining pH of the reaction mixture at 8–10 by adding 3% sodium carbonate solution. The reaction was monitored by TLC. After completion of the reaction, precipitates were filtered, washed and dried. The crude product obtained was crystallized by dissolving in methanol followed by slow evaporation of the solvent. M. pt. 493 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atoms were refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement three low angle reflections evidently effected by the beam stop were omitted, i.e. 0 0 1, 0 1 0, and 0 1 1.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
A view of the supramolecular double chain along the b axis in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
Fig. 3.
A view in projection down the a axis of the crystal packing in (I), highlighting the tubular topology of the double chains (shown in Fig. 2) and the π···π interactions (purple dashed lines).

Crystal data

C15H16N2O3SZ = 2
Mr = 304.37F(000) = 320
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2224 (3) ÅCell parameters from 7070 reflections
b = 8.3878 (3) Åθ = 2.9–28.3°
c = 13.0796 (5) ŵ = 0.23 mm1
α = 71.482 (2)°T = 293 K
β = 75.749 (2)°Block, colourless
γ = 61.265 (1)°0.23 × 0.14 × 0.08 mm
V = 745.27 (5) Å3

Data collection

Bruker APEXII CCD diffractometer3374 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.887, Tmax = 0.951k = −10→10
12704 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1946P] where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.12002 (5)0.25013 (5)0.75637 (3)0.04453 (15)
O1−0.01522 (16)0.24530 (17)0.84756 (11)0.0578 (3)
O20.09188 (18)0.42467 (16)0.67943 (11)0.0581 (3)
O30.4166 (2)−0.2526 (2)0.37348 (12)0.0728 (4)
N10.31999 (19)0.17594 (19)0.79741 (11)0.0459 (3)
H1N0.391 (2)0.214 (3)0.7440 (11)0.055*
N20.21546 (19)−0.29178 (19)0.51939 (11)0.0437 (3)
H2N0.164 (2)−0.365 (2)0.5573 (13)0.052*
C10.4103 (2)−0.0054 (2)0.86613 (12)0.0429 (3)
C20.5858 (3)−0.1276 (3)0.83046 (15)0.0614 (5)
H20.6388−0.09630.76010.074*
C30.6828 (3)−0.2962 (3)0.89901 (17)0.0693 (5)
H30.8020−0.37650.87460.083*
C40.6068 (3)−0.3481 (3)1.00264 (16)0.0596 (5)
C50.4290 (3)−0.2261 (3)1.03546 (15)0.0633 (5)
H50.3738−0.26011.10470.076*
C60.3305 (3)−0.0558 (3)0.96922 (14)0.0553 (4)
H60.21130.02440.99380.066*
C70.7165 (4)−0.5295 (3)1.0789 (2)0.0835 (7)
H7A0.7837−0.50811.11960.125*
H7B0.8030−0.61971.03770.125*
H7C0.6324−0.57591.12780.125*
C80.1436 (2)0.0924 (2)0.68549 (13)0.0405 (3)
C90.2424 (3)0.0930 (2)0.58393 (15)0.0541 (4)
H90.29310.17800.55370.065*
C100.2674 (3)−0.0305 (2)0.52644 (14)0.0532 (4)
H100.3330−0.02760.45750.064*
C110.1941 (2)−0.1593 (2)0.57195 (12)0.0387 (3)
C120.0926 (2)−0.1576 (2)0.67372 (13)0.0468 (4)
H120.0410−0.24190.70400.056*
C130.0671 (2)−0.0332 (2)0.73066 (13)0.0472 (4)
H13−0.0010−0.03350.79890.057*
C140.3207 (2)−0.3310 (2)0.42545 (13)0.0451 (4)
C150.3142 (3)−0.4801 (2)0.38969 (15)0.0561 (4)
H15A0.3141−0.44570.31230.084*
H15B0.2028−0.49410.42400.084*
H15C0.4215−0.59620.40980.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0380 (2)0.0362 (2)0.0593 (3)−0.01654 (16)−0.00415 (16)−0.01162 (17)
O10.0426 (6)0.0572 (7)0.0737 (8)−0.0215 (5)0.0084 (6)−0.0273 (6)
O20.0592 (7)0.0366 (6)0.0783 (8)−0.0216 (5)−0.0167 (6)−0.0052 (6)
O30.0807 (10)0.0762 (9)0.0703 (8)−0.0511 (8)0.0268 (7)−0.0277 (7)
N10.0425 (7)0.0476 (7)0.0521 (7)−0.0252 (6)−0.0035 (6)−0.0098 (6)
N20.0436 (7)0.0411 (7)0.0487 (7)−0.0239 (6)−0.0029 (5)−0.0061 (5)
C10.0433 (8)0.0455 (8)0.0463 (8)−0.0229 (7)−0.0056 (6)−0.0127 (6)
C20.0550 (10)0.0598 (11)0.0530 (9)−0.0163 (9)0.0022 (8)−0.0132 (8)
C30.0625 (12)0.0567 (11)0.0703 (12)−0.0092 (9)−0.0084 (10)−0.0185 (9)
C40.0733 (12)0.0496 (10)0.0644 (11)−0.0289 (9)−0.0261 (9)−0.0068 (8)
C50.0692 (12)0.0741 (13)0.0490 (9)−0.0402 (11)−0.0099 (8)−0.0003 (9)
C60.0471 (9)0.0671 (11)0.0497 (9)−0.0262 (8)−0.0002 (7)−0.0130 (8)
C70.1059 (19)0.0585 (13)0.0869 (15)−0.0302 (13)−0.0458 (14)−0.0009 (11)
C80.0349 (7)0.0340 (7)0.0512 (8)−0.0156 (6)−0.0072 (6)−0.0056 (6)
C90.0579 (10)0.0488 (9)0.0631 (10)−0.0371 (8)0.0089 (8)−0.0120 (8)
C100.0578 (10)0.0520 (9)0.0530 (9)−0.0345 (8)0.0110 (7)−0.0124 (7)
C110.0333 (7)0.0342 (7)0.0455 (7)−0.0151 (6)−0.0079 (6)−0.0022 (6)
C120.0528 (9)0.0448 (8)0.0483 (8)−0.0322 (7)0.0000 (7)−0.0043 (7)
C130.0525 (9)0.0460 (8)0.0458 (8)−0.0300 (7)0.0017 (7)−0.0060 (6)
C140.0395 (8)0.0408 (8)0.0474 (8)−0.0137 (6)−0.0080 (6)−0.0048 (6)
C150.0551 (10)0.0522 (10)0.0601 (10)−0.0186 (8)−0.0121 (8)−0.0155 (8)

Geometric parameters (Å, °)

S1—O11.4214 (13)C5—H50.9300
S1—O21.4362 (12)C6—H60.9300
S1—N11.6178 (14)C7—H7A0.9600
S1—C81.7581 (16)C7—H7B0.9600
O3—C141.211 (2)C7—H7C0.9600
N1—C11.431 (2)C8—C91.376 (2)
N1—H1N0.877 (9)C8—C131.383 (2)
N2—C141.351 (2)C9—C101.376 (2)
N2—C111.406 (2)C9—H90.9300
N2—H2N0.867 (9)C10—C111.388 (2)
C1—C21.378 (2)C10—H100.9300
C1—C61.377 (2)C11—C121.386 (2)
C2—C31.379 (3)C12—C131.376 (2)
C2—H20.9300C12—H120.9300
C3—C41.374 (3)C13—H130.9300
C3—H30.9300C14—C151.495 (2)
C4—C51.378 (3)C15—H15A0.9600
C4—C71.511 (3)C15—H15B0.9600
C5—C61.376 (3)C15—H15C0.9600
O1—S1—O2119.51 (8)H7A—C7—H7B109.5
O1—S1—N1109.54 (8)C4—C7—H7C109.5
O2—S1—N1104.83 (7)H7A—C7—H7C109.5
O1—S1—C8107.30 (7)H7B—C7—H7C109.5
O2—S1—C8107.71 (8)C9—C8—C13119.74 (15)
N1—S1—C8107.41 (7)C9—C8—S1119.07 (12)
C1—N1—S1122.71 (10)C13—C8—S1121.19 (12)
C1—N1—H1N116.6 (13)C8—C9—C10121.02 (14)
S1—N1—H1N108.7 (13)C8—C9—H9119.5
C14—N2—C11128.32 (13)C10—C9—H9119.5
C14—N2—H2N117.5 (13)C9—C10—C11119.64 (15)
C11—N2—H2N113.7 (12)C9—C10—H10120.2
C2—C1—C6119.49 (17)C11—C10—H10120.2
C2—C1—N1119.02 (15)C12—C11—C10119.07 (15)
C6—C1—N1121.37 (15)C12—C11—N2117.67 (13)
C1—C2—C3120.06 (18)C10—C11—N2123.25 (14)
C1—C2—H2120.0C13—C12—C11121.06 (14)
C3—C2—H2120.0C13—C12—H12119.5
C4—C3—C2121.35 (19)C11—C12—H12119.5
C4—C3—H3119.3C12—C13—C8119.45 (15)
C2—C3—H3119.3C12—C13—H13120.3
C3—C4—C5117.56 (18)C8—C13—H13120.3
C3—C4—C7121.1 (2)O3—C14—N2122.59 (16)
C5—C4—C7121.3 (2)O3—C14—C15121.55 (16)
C6—C5—C4122.19 (18)N2—C14—C15115.85 (15)
C6—C5—H5118.9C14—C15—H15A109.5
C4—C5—H5118.9C14—C15—H15B109.5
C5—C6—C1119.30 (17)H15A—C15—H15B109.5
C5—C6—H6120.3C14—C15—H15C109.5
C1—C6—H6120.3H15A—C15—H15C109.5
C4—C7—H7A109.5H15B—C15—H15C109.5
C4—C7—H7B109.5
O1—S1—N1—C157.85 (14)O1—S1—C8—C13−11.81 (16)
O2—S1—N1—C1−172.76 (12)O2—S1—C8—C13−141.68 (14)
C8—S1—N1—C1−58.38 (14)N1—S1—C8—C13105.88 (14)
S1—N1—C1—C2121.29 (16)C13—C8—C9—C10−0.3 (3)
S1—N1—C1—C6−62.61 (19)S1—C8—C9—C10178.75 (15)
C6—C1—C2—C3−2.2 (3)C8—C9—C10—C11−0.9 (3)
N1—C1—C2—C3173.98 (18)C9—C10—C11—C121.7 (3)
C1—C2—C3—C41.3 (3)C9—C10—C11—N2−179.09 (16)
C2—C3—C4—C50.6 (3)C14—N2—C11—C12−173.58 (15)
C2—C3—C4—C7−177.6 (2)C14—N2—C11—C107.2 (3)
C3—C4—C5—C6−1.7 (3)C10—C11—C12—C13−1.3 (2)
C7—C4—C5—C6176.52 (19)N2—C11—C12—C13179.41 (15)
C4—C5—C6—C10.8 (3)C11—C12—C13—C80.1 (3)
C2—C1—C6—C51.2 (3)C9—C8—C13—C120.7 (3)
N1—C1—C6—C5−174.91 (16)S1—C8—C13—C12−178.36 (13)
O1—S1—C8—C9169.12 (13)C11—N2—C14—O31.1 (3)
O2—S1—C8—C939.25 (15)C11—N2—C14—C15−179.77 (14)
N1—S1—C8—C9−73.19 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.603.125 (3)116
C10—H10···O30.932.222.818 (3)121
C13—H13···O10.932.562.914 (3)103
N1—H1n···O3i0.88 (2)1.99 (2)2.853 (3)169 (2)
N2—H2n···O2ii0.87 (2)2.18 (2)3.029 (2)165 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2305).

References

  • Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.
  • Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088. [PMC free article] [PubMed]
  • Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography