PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1966.
Published online 2010 July 10. doi:  10.1107/S1600536810026474
PMCID: PMC3007300

3,4,6-Trimethyl-1-phenyl-1H-pyrazolo­[3,4-b]pyridine

Abstract

In the title compound, C15H15N3, the 1H-pyrazolo­[3,4-b]pyridine system and the phenyl ring are each individually planar, with r.m.s. deviations of 0.017 (2) and 0.011 (2) Å, respectively; the dihedral angle between the two aromatic systems is 9.33 (10)°. The crystal packing is stabilized by offset π–π stacking between parallel pyrazolo­[3,4-b]pyridine ring systems [face-to-face distance = 3.449 (6) Å].

Related literature

For a general review of pyrazolo­pyridines, see: Hardy (1984 [triangle]). For related compounds displaying biological activity, see: Chu & Lynchj (1975 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1966-scheme1.jpg

Experimental

Crystal data

  • C15H15N3
  • M r = 237.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1966-efi1.jpg
  • a = 7.1714 (2) Å
  • b = 12.0690 (4) Å
  • c = 14.5491 (5) Å
  • β = 101.251 (1)°
  • V = 1235.05 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.32 × 0.29 × 0.12 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer
  • 10642 measured reflections
  • 2252 independent reflections
  • 1841 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.198
  • S = 1.09
  • 2252 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026474/xu2793sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026474/xu2793Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CNRST of Morocco for making this work possible.

supplementary crystallographic information

Comment

Many polysubstituted derivatives of 1 H-pyrazolo[3,4-b]pyridine have been synthesized as potentially biologically active materials (Hardy, 1984; Chu & Lynchj, 1975).

The dihedral angle between the two aromatic ring systems in the title compound, C15H15N3, is 9.33 (10)°. The 1H-pyrazolo[3,4-b]pyridine and the phenyl rings are planarswith r.m.s. deviation of 0.017 (2) and 0.011 (2) Å, respectively.

The Bond lengths and angles in title compound (Fig. 1) are found to have normal values [Allen et al., 1987]. The crystal packing is stabilized by offset π-π stacking between parallel pyrazolo[3,4-b]pyridine ring sestems related by an inversion center at 1.0, 0.5, 0.0, the face-to-face distance is 3.449 (6) Å.

Experimental

To a solution of 4-hydroxy-6-methylpyran-2-one (291 mg, 2.309 mmol) and 5-amino-3-methyl-1-phenylpyrazole (200 mg, 1.154 mmol) in 10 ml of n-butanol was added p-toluenesulfonic acid (0.12 mg).

The reaction mixture was refluxed for 42 h. After evaporation of solvent, the residue was then purified over silica gel column chromatography using a (98:2) mixture of hexane and ethyl acetate as eluent. Under these conditions the compound was obtained as colourless crystals.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) and C—H = 0.93 Å (aromatic), Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for the others.

Figures

Fig. 1.
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C15H15N3F(000) = 504
Mr = 237.30Dx = 1.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1348 reflections
a = 7.1714 (2) Åθ = 2.6–25.5°
b = 12.0690 (4) ŵ = 0.08 mm1
c = 14.5491 (5) ÅT = 296 K
β = 101.251 (1)°Prism, colourless
V = 1235.05 (7) Å30.32 × 0.29 × 0.12 mm
Z = 4

Data collection

Bruker X8 APEXII CCD area-detector diffractometer1841 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
graphiteθmax = 25.3°, θmin = 2.9°
[var phi] and ω scansh = −7→8
10642 measured reflectionsk = −14→14
2252 independent reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.104P)2 + 1.0638P] where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8454 (3)0.7445 (2)−0.04712 (18)0.0367 (6)
C20.7992 (4)0.6928 (2)−0.13595 (19)0.0421 (7)
C30.7465 (3)0.5818 (2)−0.14607 (17)0.0332 (6)
C40.7468 (3)0.5266 (2)−0.06073 (18)0.0351 (6)
C50.7917 (3)0.5850 (2)0.02285 (17)0.0316 (6)
C60.9021 (4)0.8635 (2)−0.0425 (2)0.0472 (7)
C70.6952 (4)0.5279 (3)−0.23948 (19)0.0492 (8)
C80.7099 (3)0.4171 (2)−0.0326 (2)0.0380 (7)
C90.6593 (4)0.3137 (3)−0.0909 (2)0.0481 (8)
C100.8125 (3)0.5303 (2)0.19304 (17)0.0317 (6)
C110.8164 (3)0.4380 (2)0.24944 (19)0.0378 (6)
C120.8416 (4)0.4501 (2)0.3447 (2)0.0404 (7)
C130.8649 (4)0.5527 (2)0.38535 (18)0.0362 (6)
C140.8657 (4)0.6457 (2)0.33032 (18)0.0356 (6)
C150.8396 (3)0.6356 (2)0.23326 (18)0.0355 (6)
N10.8420 (3)0.69504 (17)0.03365 (15)0.0339 (5)
N20.7298 (3)0.41044 (18)0.05772 (16)0.0380 (6)
N30.7801 (3)0.51439 (17)0.09427 (15)0.0332 (5)
H110.80190.36770.22280.045*
H120.84280.38770.38230.048*
H130.88020.55970.45010.043*
H140.88380.71530.35810.043*
H150.84010.69800.19580.043*
H20.80420.7343−0.18930.051*
H6A0.79310.9085−0.06650.071*
H6B0.99750.8750−0.07960.071*
H6C0.95230.88350.02140.071*
H7A0.70680.5806−0.28740.074*
H7B0.56660.5016−0.24880.074*
H7C0.77920.4666−0.24250.074*
H9A0.76620.2913−0.11730.072*
H9B0.55290.3288−0.14050.072*
H9C0.62680.2554−0.05200.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0326 (13)0.0418 (15)0.0371 (14)0.0062 (11)0.0100 (11)−0.0020 (11)
C20.0459 (15)0.0491 (17)0.0334 (15)0.0081 (12)0.0129 (12)0.0066 (12)
C30.0279 (12)0.0443 (15)0.0284 (13)0.0109 (10)0.0075 (10)0.0000 (11)
C40.0274 (12)0.0418 (15)0.0358 (14)0.0058 (10)0.0055 (10)−0.0037 (11)
C50.0251 (11)0.0406 (14)0.0302 (13)0.0069 (10)0.0082 (9)0.0044 (10)
C60.0545 (17)0.0469 (17)0.0440 (17)0.0002 (13)0.0191 (13)0.0156 (13)
C70.0453 (16)0.068 (2)0.0342 (15)0.0045 (14)0.0065 (12)−0.0091 (14)
C80.0257 (12)0.0334 (14)0.0554 (18)0.0045 (10)0.0092 (11)0.0069 (12)
C90.0431 (15)0.0554 (19)0.0420 (17)0.0041 (13)−0.0011 (12)−0.0138 (13)
C100.0224 (11)0.0444 (15)0.0279 (12)0.0048 (10)0.0041 (9)−0.0043 (11)
C110.0367 (13)0.0302 (13)0.0470 (16)−0.0026 (10)0.0096 (11)−0.0034 (11)
C120.0430 (14)0.0353 (15)0.0445 (16)0.0020 (11)0.0127 (12)0.0116 (12)
C130.0400 (14)0.0445 (15)0.0238 (12)0.0081 (11)0.0050 (10)0.0046 (11)
C140.0422 (14)0.0296 (13)0.0338 (14)0.0040 (11)0.0044 (11)−0.0049 (10)
C150.0394 (13)0.0338 (13)0.0333 (14)0.0079 (11)0.0072 (10)0.0114 (11)
N10.0322 (11)0.0275 (11)0.0444 (13)0.0041 (8)0.0134 (9)0.0057 (9)
N20.0374 (12)0.0295 (12)0.0460 (14)−0.0025 (9)0.0053 (10)−0.0084 (10)
N30.0373 (11)0.0284 (11)0.0339 (12)−0.0010 (9)0.0068 (9)−0.0026 (9)

Geometric parameters (Å, °)

C1—C61.491 (4)C10—C111.380 (4)
C2—H20.9300C11—H110.9300
C2—C11.415 (4)C11—C121.370 (4)
C3—C71.487 (4)C12—H120.9300
C3—C41.408 (4)C13—H130.9300
C3—C21.392 (4)C13—C141.379 (4)
C4—C81.424 (4)C13—C121.368 (4)
C4—C51.388 (4)C14—H140.9300
C6—H6C0.9600C15—H150.9300
C6—H6B0.9600C15—C101.397 (4)
C6—H6A0.9600C15—C141.393 (4)
C7—H7C0.9600N1—C51.377 (3)
C7—H7B0.9600N1—C11.322 (3)
C7—H7A0.9600N2—N31.383 (3)
C8—C91.512 (4)N2—C81.296 (4)
C9—H9C0.9600N3—C101.423 (3)
C9—H9B0.9600N3—C51.359 (3)
C9—H9A0.9600
C1—C6—H6C109.5C12—C13—C14119.9 (2)
C1—C6—H6B109.5C12—C11—H11120.0
C1—C6—H6A109.5C12—C11—C10119.9 (2)
C1—C2—H2118.9C13—C12—H12119.5
C1—N1—C5112.6 (2)C13—C12—C11121.0 (2)
C2—C1—C6118.6 (2)C13—C14—H14119.9
C2—C3—C7122.1 (2)C13—C14—C15120.2 (2)
C2—C3—C4114.1 (2)C14—C13—H13120.0
C3—C7—H7C109.5C14—C15—H15120.5
C3—C7—H7B109.5C14—C15—C10119.0 (2)
C3—C7—H7A109.5C15—C14—H14119.9
C3—C2—H2118.9C15—C10—N3121.8 (2)
C3—C2—C1122.1 (2)H6A—C6—H6C109.5
C3—C4—C8136.4 (3)H6A—C6—H6B109.5
C4—C8—C9130.0 (3)H6B—C6—H6C109.5
C4—C3—C7123.8 (3)H7A—C7—H7C109.5
C5—C4—C8104.1 (2)H7A—C7—H7B109.5
C5—C4—C3119.5 (3)H7B—C7—H7C109.5
C5—N3—C10131.7 (2)H9A—C9—H9C109.5
C5—N3—N2109.0 (2)H9A—C9—H9B109.5
C8—C9—H9C109.5H9B—C9—H9C109.5
C8—C9—H9B109.5N1—C1—C6116.6 (2)
C8—C9—H9A109.5N1—C1—C2124.8 (3)
C8—N2—N3107.6 (2)N1—C5—C4126.9 (2)
C10—C11—H11120.0N2—C8—C9119.0 (2)
C10—C15—H15120.5N2—C8—C4111.0 (2)
C11—C12—H12119.5N2—N3—C10119.3 (2)
C11—C10—N3118.2 (2)N3—C5—C4108.2 (2)
C11—C10—C15120.0 (2)N3—C5—N1124.8 (2)
C12—C13—H13120.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2793).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chu, I. & Lynchj, B. M. (1975). J. Med. Chem.18, 161–165. [PubMed]
  • Hardy, C. R. (1984). Heterocycl. Chem.36, 343–409.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography