PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2093–o2094.
Published online 2010 July 24. doi:  10.1107/S1600536810027960
PMCID: PMC3007292

Bis­(2-amino-5-methyl­pyridinium) fumarate–fumaric acid (1/1)

Abstract

In the crystal structure of the title compound, C6H9N2 +·0.5C4H2O4 2−·0.5C4H6O4, the fumarate dianion and fumaric acid mol­ecule are located on inversion centres. The 2-amino-5-methyl­pyrimidinium cation inter­acts with the carboxyl­ate group of the fumarate anion through a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. These motifs are centrosymmetrically paired via N—H(...)O hydrogen bonds, forming a complementary DDAA array. The carboxyl groups of the fumaric acid mol­ecules and the carboxyl­ate groups of the fumarate anions are hydrogen bonded through O—H(...)O hydrogen bonds, leading to a supra­molecular chain along [101]. The crystal structure is further stabilized by weak C—H(...)O hydrogen bonds.

Related literature

For details of fumaric acid, see: Batchelor et al. (2000 [triangle]). For related structures, see: Hemamalini & Fun (2010a [triangle],b [triangle],c [triangle]); Nahringbauer & Kvick (1977 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For DDAA arrays, see: Robert et al. (2001 [triangle]); Umadevi et al. (2002 [triangle]); Thanigaimani et al. (2007 [triangle]). For carbox­yl–carboxyl­ate inter­actions, see: Büyükgüngör & Odabaşoğlu (2002 [triangle]); Büyükgüngör et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2093-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·0.5C4H4O4 2−·0.5C4H2O4
  • M r = 224.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2093-efi1.jpg
  • a = 4.0366 (4) Å
  • b = 9.3145 (10) Å
  • c = 14.0077 (14) Å
  • α = 94.030 (3)°
  • β = 95.060 (3)°
  • γ = 90.903 (3)°
  • V = 523.20 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.61 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.935, T max = 0.978
  • 19772 measured reflections
  • 5445 independent reflections
  • 4852 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.110
  • S = 1.05
  • 5445 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027960/is2576sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027960/is2576Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Recently we have reported the crystal structures of 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010c). and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010b). Fumaric acid is of interest since it is known to form supramolecular assemblies with N-aromatic complexes (Batchelor et al., 2000). Herein we report the crystal structure and supramolecular patterns of the new compound containing pyridine derivative and fumaric acid components.

The title compound (I) is shown in Fig. 1. The asymmetric unit contains one 2-amino-5-methylpyridinium cation, a half of the fumarate anion and a half of the fumaric acid molecule. The dihedral angles between pyridinium ring and the planes formed by the fumarate anion and fumaric acid molecule are 10.53 (2)° and 55.21 (2)°, respectively. The planar fumarate and fumaric acid molecule is centrosymmetric with the mid-point of the C═C double bond located at an inversion center. In the fumaric acid, the C7—O1 bond distance of 1.2118 (7) Å is much shorter than the C7—O2 bond distance of 1.3199 (7) Å suggesting that the carboxyl group is not deprotonated in the crystal structure. The 2-amino-5-methyl pyridinium cation is essentially planar with a maximum deviation of 0.011 (1) Å for atom N1. The 2-amino-5-methylpyridine is protonated at N1 which is evident from the increase in the internal angle at N1 (C1—N1—C5) from 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977) to 123.03 (5)° in the present study. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1···O4 and N2—H2A···O3 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N2—H2B···O3 hydrogen bonds to produce the DDAA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds. This can be represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002) and 2-amino-4,6-dimethoxypyridinium salicylate (Thanigaimani et al., 2007). The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2—H2C···O4 hydrogen bonds leading to the formation of a one-dimensional hydrogen-bonded supramolecular chain along the [101] (Fig. 3). This type of carboxyl–carboxylate interaction has been reported in the crystal structures of 2-aminopyridinium–succinate –succinic acid (Büyükgüngör & Odabaşoğlu, 2002) and 2- aminopyridinium–fumarate–fumaric acid (Büyükgüngör et al., 2004). This chain can be designated by graph-set notation C22(14). The crystal structure is further stabilized by weak intermolecular C5—H5···O1 (Table 1) hydrogen bonds.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and fumaric acid (29 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All hydrogen atoms were positioned geometrically (O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The title compound with displacement ellipsoids drawn at the 50% probability level. O1A/O2A/C7A/C8A and O3A/O4A/C9A/C10A are generated by the symmetry codes -x + 1, -y, -z and -x, -y, -z, respectively.
Fig. 2.
The DDAA hydrogen-bonding pattern in (I). Dashed lines indicate hydrogen bonds. These 2D patterns are stacked along the a-axis.
Fig. 3.
The carboxyl-carboxylate interactions of the title compound (I), viewed down the a axis, forming a 1D supramolecular chain along [101].

Crystal data

C6H9N2+·0.5C4H4O42·0.5C4H2O4Z = 2
Mr = 224.22F(000) = 236
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.0366 (4) ÅCell parameters from 9900 reflections
b = 9.3145 (10) Åθ = 2.7–37.6°
c = 14.0077 (14) ŵ = 0.11 mm1
α = 94.030 (3)°T = 100 K
β = 95.060 (3)°Block, colourless
γ = 90.903 (3)°0.61 × 0.22 × 0.20 mm
V = 523.20 (9) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer5445 independent reflections
Radiation source: fine-focus sealed tube4852 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 37.7°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.935, Tmax = 0.978k = −15→15
19772 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0626P)2 + 0.0878P] where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.64925 (12)0.45378 (5)0.20997 (3)0.01315 (8)
H10.57640.37000.18700.016*
N20.31601 (12)0.55122 (5)0.09009 (3)0.01504 (9)
H2A0.24040.46620.07120.018*
H2B0.24510.62410.06050.018*
C10.54215 (13)0.56996 (5)0.16485 (4)0.01190 (8)
C20.67623 (13)0.70674 (5)0.20110 (4)0.01341 (9)
H20.61470.78900.17060.016*
C30.89669 (13)0.71642 (6)0.28125 (4)0.01392 (9)
H30.98450.80620.30480.017*
C40.99507 (13)0.59304 (6)0.32951 (4)0.01383 (9)
C50.86767 (13)0.46307 (6)0.29027 (4)0.01433 (9)
H50.93110.37950.31890.017*
C61.21690 (15)0.60555 (7)0.42149 (4)0.01903 (10)
H6A1.10010.65170.47160.029*
H6B1.41230.66170.41310.029*
H6C1.28030.51120.43880.029*
O10.27081 (16)0.19332 (6)0.39352 (4)0.02686 (12)
O20.49662 (14)0.03168 (5)0.29314 (3)0.02170 (10)
H2C0.42570.08490.25220.033*
C70.42204 (15)0.08387 (6)0.37847 (4)0.01544 (9)
C80.54504 (15)−0.00956 (6)0.45556 (4)0.01586 (9)
H80.6889−0.08330.44100.019*
O30.10076 (14)0.26911 (5)0.02053 (3)0.02176 (10)
O40.34405 (13)0.19338 (5)0.15605 (3)0.02015 (10)
C90.17514 (14)0.17185 (6)0.07482 (4)0.01450 (9)
C100.06922 (15)0.01973 (6)0.04396 (4)0.01504 (9)
H100.1014−0.05010.08800.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.01540 (17)0.00928 (16)0.01454 (17)0.00050 (13)−0.00023 (13)0.00127 (13)
N20.01861 (19)0.01217 (18)0.01362 (17)0.00003 (14)−0.00253 (14)0.00090 (14)
C10.01360 (18)0.01021 (18)0.01198 (18)0.00080 (14)0.00146 (14)0.00086 (14)
C20.0165 (2)0.00966 (18)0.01402 (19)0.00031 (15)0.00102 (15)0.00067 (14)
C30.01491 (19)0.01202 (19)0.01459 (19)−0.00112 (15)0.00159 (15)−0.00077 (15)
C40.01274 (18)0.0149 (2)0.01376 (19)0.00020 (15)0.00090 (14)0.00098 (15)
C50.01445 (19)0.0131 (2)0.0155 (2)0.00149 (15)−0.00004 (15)0.00273 (15)
C60.0157 (2)0.0245 (3)0.0163 (2)−0.00173 (18)−0.00234 (16)0.00247 (19)
O10.0431 (3)0.0210 (2)0.01696 (19)0.0171 (2)0.00033 (18)0.00395 (16)
O20.0396 (3)0.01464 (18)0.01119 (16)0.00699 (17)0.00121 (16)0.00307 (13)
C70.0220 (2)0.01199 (19)0.01201 (18)0.00230 (16)−0.00174 (16)0.00234 (15)
C80.0221 (2)0.0134 (2)0.01226 (19)0.00444 (17)−0.00012 (16)0.00316 (15)
O30.0348 (2)0.01109 (17)0.01746 (18)−0.00270 (15)−0.01071 (16)0.00485 (14)
O40.0338 (2)0.01254 (17)0.01229 (16)−0.00547 (15)−0.00885 (15)0.00302 (13)
C90.0213 (2)0.01004 (18)0.01138 (18)−0.00190 (15)−0.00325 (15)0.00168 (14)
C100.0219 (2)0.01007 (18)0.01231 (19)−0.00229 (16)−0.00368 (15)0.00215 (14)

Geometric parameters (Å, °)

N1—C11.3492 (7)C6—H6A0.9600
N1—C51.3635 (7)C6—H6B0.9600
N1—H10.8600C6—H6C0.9600
N2—C11.3271 (7)O1—C71.2118 (7)
N2—H2A0.8600O2—C71.3199 (7)
N2—H2B0.8600O2—H2C0.8200
C1—C21.4188 (8)C7—C81.4903 (7)
C2—C31.3665 (7)C8—C8i1.3285 (11)
C2—H20.9300C8—H80.9300
C3—C41.4184 (8)O3—C91.2468 (7)
C3—H30.9300O4—C91.2754 (6)
C4—C51.3671 (8)C9—C101.4965 (8)
C4—C61.4992 (8)C10—C10ii1.3314 (10)
C5—H50.9300C10—H100.9300
C1—N1—C5123.03 (5)C4—C5—H5119.4
C1—N1—H1118.5C4—C6—H6A109.5
C5—N1—H1118.5C4—C6—H6B109.5
C1—N2—H2A120.0H6A—C6—H6B109.5
C1—N2—H2B120.0C4—C6—H6C109.5
H2A—N2—H2B120.0H6A—C6—H6C109.5
N2—C1—N1118.82 (5)H6B—C6—H6C109.5
N2—C1—C2123.44 (5)C7—O2—H2C109.5
N1—C1—C2117.73 (5)O1—C7—O2125.02 (5)
C3—C2—C1119.37 (5)O1—C7—C8123.42 (5)
C3—C2—H2120.3O2—C7—C8111.56 (5)
C1—C2—H2120.3C8i—C8—C7121.87 (6)
C2—C3—C4121.69 (5)C8i—C8—H8119.1
C2—C3—H3119.2C7—C8—H8119.1
C4—C3—H3119.2O3—C9—O4123.73 (5)
C5—C4—C3116.88 (5)O3—C9—C10119.39 (5)
C5—C4—C6121.66 (5)O4—C9—C10116.87 (4)
C3—C4—C6121.41 (5)C10ii—C10—C9122.67 (6)
N1—C5—C4121.22 (5)C10ii—C10—H10118.7
N1—C5—H5119.4C9—C10—H10118.7
C5—N1—C1—N2−176.50 (5)C1—N1—C5—C4−0.74 (8)
C5—N1—C1—C22.78 (8)C3—C4—C5—N1−1.74 (8)
N2—C1—C2—C3176.95 (5)C6—C4—C5—N1175.74 (5)
N1—C1—C2—C3−2.29 (8)O1—C7—C8—C8i10.08 (12)
C1—C2—C3—C4−0.13 (8)O2—C7—C8—C8i−169.47 (8)
C2—C3—C4—C52.14 (8)O3—C9—C10—C10ii7.89 (11)
C2—C3—C4—C6−175.35 (5)O4—C9—C10—C10ii−170.95 (8)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.892.7305 (7)167
N2—H2A···O30.861.982.8334 (7)175
N2—H2B···O3iii0.862.042.8329 (7)154
O2—H2C···O40.821.752.5618 (7)170
C5—H5···O1iv0.932.463.3582 (9)162

Symmetry codes: (iii) −x, −y+1, −z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2576).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem.10, 839–848.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Büyükgüngör, O. & Odabaşoğlu, M., M. (2002). Acta Cryst. C58, o691–o692. [PubMed]
  • Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o621. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623–o624. [PMC free article] [PubMed]
  • Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662. [PMC free article] [PubMed]
  • Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  • Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556.
  • Umadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510–o512. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography