PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2016.
Published online 2010 July 14. doi:  10.1107/S1600536810027121
PMCID: PMC3007276

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine

Abstract

The title compound, C7H5ClN4, is almost planar (r.m.s. deviation = 0.022 Å). The dihedral angle between the aromatic rings is 2.82 (5)°. The packing results in polymeric chains extending along the a axis. In the crystal, mol­ecules are connected to each other through inter­molecular C—H(...)N hydrogen bonds, resulting in R 2 2(10) ring motifs.

Related literature

For related structures, see: Ather et al. (2009 [triangle], 2010a [triangle],b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2016-scheme1.jpg

Experimental

Crystal data

  • C7H5ClN4
  • M r = 180.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2016-efi1.jpg
  • a = 5.684 (3) Å
  • b = 6.526 (3) Å
  • c = 11.130 (6) Å
  • α = 83.00 (3)°
  • β = 77.64 (2)°
  • γ = 88.04 (3)°
  • V = 400.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 296 K
  • 0.30 × 0.14 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.982, T max = 0.988
  • 5550 measured reflections
  • 1422 independent reflections
  • 774 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.154
  • S = 1.08
  • 1422 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027121/vm2034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027121/vm2034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) has been prepared as nucleous to synthesize a series of pyrazolylpyridazine derivatives. In this context, we have already reported some compounds (Ather et al., 2009, 2010a, 2010b).

The title compound is essentially planar. The r. m. s. deviation of all heavy atoms from the mean square plane is 0.0223 Å. The angle between the heterocyclic aromatic rings is 2.82 (5)°. Each molecule is connected to the adjacent molecules through C—H···N intermolecular H-bonds (Table 1, Fig. 2) and R22(10) ring motifs (Bernstein et al., 1995) are formed. In this way the packing forms one dimensional polymeric chains extending along the crystallographic a axis.

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol) was dissolved in ethanol (15 ml) and malon dialdehyde bis-(diethylacetal) (0.327 g, 3.46 mmol) was added dropwise under continuous stirring. Few drops of acetic acid were also added in the reaction mixture as catalyst and the solution was refluxed for 2 h. The reaction was monitored by TLC. After completion, the reaction mixture was precipitated by adding water. The filtered precipitate was dried and colorless needles of (I) appeared on the walls of the beaker due to evaporation.

Refinement

Although all H-atoms appear in the difference Fourier map they were positioned geometrically (C–H = 0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Packing diagram of the title compound (PLATON: Spek, 2009) showing that the molecules form polymeric chains extending along the a axis.

Crystal data

C7H5ClN4Z = 2
Mr = 180.60F(000) = 184
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.684 (3) ÅCell parameters from 774 reflections
b = 6.526 (3) Åθ = 3.2–25.1°
c = 11.130 (6) ŵ = 0.42 mm1
α = 83.00 (3)°T = 296 K
β = 77.64 (2)°Needle, colourless
γ = 88.04 (3)°0.30 × 0.14 × 0.14 mm
V = 400.2 (4) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer1422 independent reflections
Radiation source: fine-focus sealed tube774 reflections with I > 2σ(I)
graphiteRint = 0.071
Detector resolution: 8.20 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω scansh = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −7→7
Tmin = 0.982, Tmax = 0.988l = −13→13
5550 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0381P)2 + 0.276P] where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.0311 (2)0.6902 (2)0.86426 (11)0.0772 (6)
N1−0.0066 (6)0.7294 (6)0.6368 (3)0.0586 (14)
N20.0752 (6)0.7486 (6)0.5126 (3)0.0525 (14)
N30.3753 (6)0.7757 (5)0.3384 (3)0.0449 (14)
N40.6127 (6)0.7910 (6)0.2806 (3)0.0576 (16)
C10.1521 (8)0.7182 (7)0.7066 (4)0.0503 (17)
C20.4010 (7)0.7237 (7)0.6628 (4)0.0506 (17)
C30.4819 (7)0.7451 (6)0.5399 (4)0.0450 (16)
C40.3094 (7)0.7556 (6)0.4674 (4)0.0417 (16)
C50.2316 (9)0.7798 (8)0.2556 (4)0.0676 (19)
C60.3770 (10)0.7966 (9)0.1421 (5)0.078 (2)
C70.6095 (9)0.8042 (8)0.1617 (5)0.0701 (19)
H20.506430.712940.716720.0608*
H30.645640.752540.504600.0538*
H50.064400.772510.273660.0814*
H60.331120.802000.066460.0928*
H70.746720.817080.098570.0841*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0676 (9)0.1105 (13)0.0459 (8)−0.0045 (8)0.0038 (6)−0.0068 (7)
N10.040 (2)0.084 (3)0.047 (2)−0.002 (2)0.0002 (19)−0.005 (2)
N20.028 (2)0.076 (3)0.051 (2)−0.0027 (17)−0.0050 (16)−0.003 (2)
N30.0321 (19)0.055 (3)0.044 (2)−0.0020 (17)−0.0012 (16)−0.0033 (18)
N40.041 (2)0.076 (3)0.049 (3)−0.0033 (19)0.0048 (17)−0.005 (2)
C10.046 (3)0.061 (3)0.040 (3)−0.004 (2)0.002 (2)−0.009 (2)
C20.040 (3)0.060 (3)0.052 (3)−0.001 (2)−0.011 (2)−0.005 (2)
C30.031 (2)0.049 (3)0.052 (3)−0.0045 (19)−0.004 (2)−0.001 (2)
C40.039 (2)0.038 (3)0.046 (3)0.0016 (19)−0.003 (2)−0.008 (2)
C50.058 (3)0.097 (4)0.051 (3)−0.002 (3)−0.021 (3)−0.004 (3)
C60.079 (4)0.104 (5)0.050 (3)−0.009 (3)−0.015 (3)−0.006 (3)
C70.061 (3)0.089 (4)0.051 (3)−0.008 (3)0.008 (2)−0.005 (3)

Geometric parameters (Å, °)

Cl1—C11.732 (5)C2—C31.338 (6)
N1—N21.353 (5)C3—C41.392 (6)
N1—C11.306 (6)C5—C61.348 (7)
N2—C41.319 (5)C6—C71.388 (8)
N3—N41.366 (5)C2—H20.9300
N3—C41.395 (5)C3—H30.9300
N3—C51.354 (6)C5—H50.9300
N4—C71.320 (6)C6—H60.9300
C1—C21.394 (6)C7—H70.9300
Cl1···Cl1i3.632 (3)C3···N2vi3.321 (6)
Cl1···H7ii2.9500C3···C3iv3.411 (6)
N1···C2iii3.318 (6)C3···C3v3.339 (6)
N1···C3iii3.305 (6)C3···C4iv3.442 (6)
N2···C3iii3.321 (6)C3···C4v3.491 (6)
N4···C2iv3.342 (6)C4···C3iv3.442 (6)
N4···C2v3.299 (6)C4···C3v3.491 (6)
N1···H2iii2.7200C7···H5vi3.0900
N1···H3iii2.7000H2···N1vi2.7200
N2···H3iii2.4600H3···N1vi2.7000
N2···H52.6600H3···N2vi2.4600
N4···H5vi2.5500H3···N42.5200
N4···H32.5200H5···N22.6600
C2···N1vi3.318 (6)H5···N4iii2.5500
C2···N4iv3.342 (6)H5···C7iii3.0900
C2···N4v3.299 (6)H7···Cl1vii2.9500
C3···N1vi3.305 (6)
N2—N1—C1117.9 (4)N3—C5—C6106.9 (5)
N1—N2—C4119.1 (3)C5—C6—C7105.7 (5)
N4—N3—C4120.1 (3)N4—C7—C6112.0 (5)
N4—N3—C5111.4 (3)C1—C2—H2121.00
C4—N3—C5128.5 (4)C3—C2—H2121.00
N3—N4—C7104.0 (4)C2—C3—H3122.00
Cl1—C1—N1114.7 (3)C4—C3—H3122.00
Cl1—C1—C2120.4 (3)N3—C5—H5126.00
N1—C1—C2124.9 (4)C6—C5—H5127.00
C1—C2—C3117.2 (4)C5—C6—H6127.00
C2—C3—C4116.9 (4)C7—C6—H6127.00
N2—C4—N3114.7 (4)N4—C7—H7124.00
N2—C4—C3124.0 (4)C6—C7—H7124.00
N3—C4—C3121.3 (4)
C1—N1—N2—C4−0.1 (6)N4—N3—C5—C60.4 (6)
N2—N1—C1—Cl1−179.1 (3)C4—N3—C5—C6−178.6 (4)
N2—N1—C1—C2−0.3 (7)N3—N4—C7—C6−0.3 (6)
N1—N2—C4—N3−180.0 (4)Cl1—C1—C2—C3179.8 (3)
N1—N2—C4—C3−0.2 (6)N1—C1—C2—C31.0 (7)
C4—N3—N4—C7179.0 (4)C1—C2—C3—C4−1.3 (6)
C5—N3—N4—C70.0 (5)C2—C3—C4—N21.0 (6)
N4—N3—C4—N2178.0 (4)C2—C3—C4—N3−179.3 (4)
N4—N3—C4—C3−1.7 (6)N3—C5—C6—C7−0.6 (6)
C5—N3—C4—N2−3.1 (6)C5—C6—C7—N40.6 (7)
C5—N3—C4—C3177.2 (4)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (vii) x+1, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N2vi0.93002.46003.321 (6)154.00
C5—H5···N4iii0.93002.55003.468 (7)169.00

Symmetry codes: (vi) x+1, y, z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2034).

References

  • Ather, A. Q., Şahin, O., Khan, I. U., Khan, M. A. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1295. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o1327. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography