PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m912.
Published online 2010 July 10. doi:  10.1107/S160053681002670X
PMCID: PMC3007273

Bromido(2-{1-[2-(morpholin-4-yl)ethyl­imino]­eth­yl}phenolato)copper(II)

Abstract

In the title complex, [CuBr(C14H19N2O2)], the CuII atom is coordinated by one phenolate O, one imine N and one amine N atom of the tridentate Schiff base ligand and by one bromide ion, resulting in a distorted CuBrN2O square-planar geometry, with the N atoms in a cis arrangement. The morpholine ring adopts a chair conformation.

Related literature

For background to Schiff base complexes and a related structure, see: Zhao (2008 [triangle]). For similar copper(II) complexes with Schiff bases, see: Zhu et al. (2005 [triangle]); Ni et al. (2005 [triangle]); Zhu (2010 [triangle]); Suleiman Gwaram et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m912-scheme1.jpg

Experimental

Crystal data

  • [CuBr(C14H19N2O2)]
  • M r = 390.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m912-efi1.jpg
  • a = 10.808 (2) Å
  • b = 17.152 (3) Å
  • c = 8.107 (2) Å
  • β = 90.059 (1)°
  • V = 1502.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.11 mm−1
  • T = 298 K
  • 0.32 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.353, T max = 0.372
  • 9814 measured reflections
  • 3211 independent reflections
  • 2506 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.171
  • S = 1.13
  • 3211 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 1.06 e Å−3
  • Δρmin = −1.06 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002670X/hb5543sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002670X/hb5543Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Shaoxing University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

As part of our ongoing studies of Schiff base complexes (e.g. Zhao, 2008), the title mononuclear copper(II) complex, (I), is reported here.

In the title complex, the Cu atom is four-coordinated by one phenolate O, one imine N, and one amine N atoms of 2-[1-(2-morpholin-4-ylethylimino)ethyl]phenolate, and by one bromide atom, forming a square planar geometry (Fig. 1). The bond lengths (Table 1) in the square planar coordination are comparable with those reported in similar copper structures with Schiff bases (Zhu et al., 2005; Ni et al., 2005; Zhu, 2010; Suleiman Gwaram et al., 2010).

Experimental

1-(2-Hydroxyphenyl)ethanone (1 mmol, 136 mg), 2-morpholin-4-ylethylamine (1 mmol, 130 mg), and copper(II) bromide (1 mmol, 223 mg) were dissolved in methanol (80 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was kept in air for a week, and blue blocks of (I) were formed.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The structure of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

Crystal data

[CuBr(C14H19N2O2)]F(000) = 788
Mr = 390.76Dx = 1.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3491 reflections
a = 10.808 (2) Åθ = 2.7–26.4°
b = 17.152 (3) ŵ = 4.11 mm1
c = 8.107 (2) ÅT = 298 K
β = 90.059 (1)°Block, blue
V = 1502.9 (5) Å30.32 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3211 independent reflections
Radiation source: fine-focus sealed tube2506 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→12
Tmin = 0.353, Tmax = 0.372k = −21→21
9814 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0288P)2 + 17.4414P] where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = −1.06 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.98896 (9)0.13655 (6)0.00058 (11)0.0314 (3)
Br11.13378 (9)0.10662 (6)−0.21461 (11)0.0482 (3)
N10.8594 (6)0.1190 (4)0.1576 (8)0.0364 (16)
N21.1147 (5)0.1243 (4)0.1957 (7)0.0268 (13)
O10.8763 (6)0.1804 (4)−0.1494 (8)0.0513 (17)
O21.3588 (5)0.0900 (4)0.3093 (9)0.0535 (17)
C10.6903 (8)0.1273 (5)−0.0276 (12)0.042 (2)
C20.7578 (8)0.1655 (5)−0.1526 (11)0.0408 (19)
C30.6965 (9)0.1916 (5)−0.2956 (12)0.045 (2)
H30.74020.2196−0.37460.054*
C40.5723 (9)0.1763 (6)−0.3203 (13)0.055 (3)
H40.53370.1924−0.41710.066*
C50.5052 (10)0.1369 (7)−0.2008 (14)0.062 (3)
H50.42180.1262−0.21800.075*
C60.5630 (9)0.1130 (6)−0.0536 (14)0.055 (3)
H60.51700.08770.02720.066*
C70.7411 (7)0.1089 (5)0.1327 (11)0.0368 (18)
C80.6584 (9)0.0816 (7)0.2725 (13)0.060 (3)
H8A0.70010.04180.33450.090*
H8B0.58290.06090.22790.090*
H8C0.63980.12480.34360.090*
C90.9094 (8)0.1095 (6)0.3272 (11)0.046 (2)
H9A0.85340.13270.40680.055*
H9B0.91840.05460.35320.055*
C101.0320 (8)0.1490 (5)0.3342 (10)0.041 (2)
H10A1.07170.13690.43850.050*
H10B1.01990.20500.32920.050*
C111.2203 (9)0.1793 (5)0.1721 (12)0.049 (2)
H11A1.19040.23260.17440.058*
H11B1.25860.17010.06570.058*
C121.3139 (9)0.1672 (7)0.3076 (14)0.059 (3)
H12A1.38260.20290.29200.070*
H12B1.27600.17890.41320.070*
C131.2577 (9)0.0373 (6)0.3351 (11)0.048 (2)
H13A1.22140.04730.44230.057*
H13B1.2888−0.01580.33520.057*
C141.1597 (8)0.0450 (5)0.2050 (10)0.0362 (18)
H14A1.19340.02980.09900.043*
H14B1.09140.01020.23040.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0325 (5)0.0353 (5)0.0264 (5)−0.0002 (4)−0.0019 (4)0.0039 (4)
Br10.0548 (6)0.0576 (6)0.0322 (5)−0.0018 (4)0.0064 (4)0.0000 (4)
N10.038 (4)0.044 (4)0.027 (3)0.008 (3)−0.006 (3)0.008 (3)
N20.026 (3)0.038 (4)0.017 (3)−0.008 (3)0.006 (2)−0.010 (2)
O10.039 (3)0.060 (4)0.055 (4)−0.004 (3)−0.009 (3)0.030 (3)
O20.028 (3)0.068 (5)0.064 (4)0.005 (3)0.003 (3)0.014 (4)
C10.039 (5)0.029 (4)0.058 (6)−0.002 (3)−0.001 (4)0.009 (4)
C20.046 (5)0.036 (5)0.040 (5)0.006 (4)−0.005 (4)−0.004 (4)
C30.049 (5)0.038 (5)0.048 (5)0.006 (4)−0.008 (4)0.001 (4)
C40.046 (6)0.058 (6)0.061 (6)0.013 (5)−0.024 (5)−0.003 (5)
C50.052 (6)0.068 (7)0.068 (7)−0.002 (5)−0.024 (5)−0.012 (6)
C60.039 (5)0.058 (6)0.068 (7)0.005 (4)−0.012 (5)−0.007 (5)
C70.029 (4)0.035 (4)0.046 (5)0.006 (3)0.006 (3)−0.005 (4)
C80.036 (5)0.091 (8)0.054 (6)0.013 (5)0.003 (4)0.018 (6)
C90.038 (5)0.065 (6)0.035 (5)0.005 (4)0.011 (4)−0.001 (4)
C100.043 (5)0.052 (5)0.029 (4)0.007 (4)0.002 (3)−0.006 (4)
C110.061 (6)0.034 (5)0.051 (6)−0.004 (4)−0.012 (5)0.003 (4)
C120.041 (5)0.069 (7)0.066 (7)−0.014 (5)−0.011 (5)−0.009 (6)
C130.053 (6)0.049 (6)0.041 (5)0.014 (4)−0.004 (4)0.008 (4)
C140.045 (5)0.030 (4)0.035 (4)0.002 (3)0.003 (4)−0.001 (3)

Geometric parameters (Å, °)

Cu1—O11.877 (6)C5—H50.9300
Cu1—N11.917 (7)C6—H60.9300
Cu1—N22.095 (6)C7—C81.518 (12)
Cu1—Br12.4006 (14)C8—H8A0.9600
N1—C71.306 (11)C8—H8B0.9600
N1—C91.486 (11)C8—H8C0.9600
N2—C141.447 (10)C9—C101.489 (13)
N2—C111.494 (11)C9—H9A0.9700
N2—C101.497 (9)C9—H9B0.9700
O1—C21.306 (11)C10—H10A0.9700
O2—C121.411 (13)C10—H10B0.9700
O2—C131.434 (12)C11—C121.508 (13)
C1—C61.413 (12)C11—H11A0.9700
C1—C21.411 (12)C11—H11B0.9700
C1—C71.445 (12)C12—H12A0.9700
C2—C31.408 (12)C12—H12B0.9700
C3—C41.382 (13)C13—C141.500 (12)
C3—H30.9300C13—H13A0.9700
C4—C51.387 (16)C13—H13B0.9700
C4—H40.9300C14—H14A0.9700
C5—C61.407 (14)C14—H14B0.9700
O1—Cu1—N191.1 (3)H8A—C8—H8B109.5
O1—Cu1—N2161.7 (3)C7—C8—H8C109.5
N1—Cu1—N287.5 (2)H8A—C8—H8C109.5
O1—Cu1—Br192.2 (2)H8B—C8—H8C109.5
N1—Cu1—Br1157.9 (2)C10—C9—N1108.0 (7)
N2—Cu1—Br195.99 (16)C10—C9—H9A110.1
C7—N1—C9118.9 (7)N1—C9—H9A110.1
C7—N1—Cu1129.3 (6)C10—C9—H9B110.1
C9—N1—Cu1111.5 (5)N1—C9—H9B110.1
C14—N2—C11110.1 (6)H9A—C9—H9B108.4
C14—N2—C10115.3 (6)C9—C10—N2112.0 (7)
C11—N2—C10112.0 (6)C9—C10—H10A109.2
C14—N2—Cu1110.6 (5)N2—C10—H10A109.2
C11—N2—Cu1109.6 (5)C9—C10—H10B109.2
C10—N2—Cu198.7 (5)N2—C10—H10B109.2
C2—O1—Cu1124.8 (6)H10A—C10—H10B107.9
C12—O2—C13109.3 (7)N2—C11—C12109.4 (7)
C6—C1—C2118.5 (9)N2—C11—H11A109.8
C6—C1—C7117.7 (8)C12—C11—H11A109.8
C2—C1—C7123.4 (8)N2—C11—H11B109.8
O1—C2—C3114.5 (8)C12—C11—H11B109.8
O1—C2—C1125.8 (8)H11A—C11—H11B108.2
C3—C2—C1119.7 (8)O2—C12—C11111.5 (8)
C4—C3—C2121.0 (9)O2—C12—H12A109.3
C4—C3—H3119.5C11—C12—H12A109.3
C2—C3—H3119.5O2—C12—H12B109.3
C5—C4—C3120.0 (9)C11—C12—H12B109.3
C5—C4—H4120.0H12A—C12—H12B108.0
C3—C4—H4120.0O2—C13—C14112.3 (7)
C4—C5—C6120.2 (10)O2—C13—H13A109.1
C4—C5—H5119.9C14—C13—H13A109.1
C6—C5—H5119.9O2—C13—H13B109.1
C5—C6—C1120.5 (10)C14—C13—H13B109.1
C5—C6—H6119.7H13A—C13—H13B107.9
C1—C6—H6119.7N2—C14—C13110.9 (7)
N1—C7—C1118.8 (8)N2—C14—H14A109.5
N1—C7—C8120.2 (8)C13—C14—H14A109.5
C1—C7—C8121.0 (8)N2—C14—H14B109.5
C7—C8—H8A109.5C13—C14—H14B109.5
C7—C8—H8B109.5H14A—C14—H14B108.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5543).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ni, J., Chen, Y.-W. & Zhang, H. (2005). Acta Cryst. E61, m2093–m2094.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813. [PMC free article] [PubMed]
  • Zhao, X.-F. (2008). Chin. J. Struct. Chem.27, 853–857.
  • Zhu, Y. (2010). Acta Cryst. E66, m419. [PMC free article] [PubMed]
  • Zhu, H.-L., Cheng, K., You, Z.-L. & Li, Y.-G. (2005). Acta Cryst. E61, m755–m756.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography