PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m901–m902.
Published online 2010 July 7. doi:  10.1107/S1600536810026140
PMCID: PMC3007264

Poly[dimethyl­ammonium [aquadi-μ2-oxalato-dysprosate(III)] trihydrate]

Abstract

The title compound, {(C2H8N)[Dy(C2O4)2(H2O)]·3H2O}n, was obtained as an unexpected product under hydro­thermal conditions. The DyIII atom is chelated by four oxalate anions, two of which are situated on two different centres of inversion. The distorted tricapped trigonal-prismatic coordination sphere of the DyIII atom is completed by a water mol­ecule. The bridging mode of the anions results in the formation of a three-dimensional network with cavities where the ammonium cations and the uncoordinated water mol­ecules reside. The structure is stabilized by numerous N—H(...)O and O—H(...)O hydrogen-bonding inter­actions.

Related literature

For decomposition mechanisms of organic ligands resulting in the formation of oxalates, see: Ghosh et al. (2004 [triangle]); Zhong et al., (2008 [triangle]). For other DyIII oxalate compounds, see: Hansson (1973 [triangle]); Kahwa et al. (1984 [triangle]); Ollendorff et al. (1969 [triangle]). The structure of the isotypic EuIII compound was reported by Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m901-scheme1.jpg

Experimental

Crystal data

  • (C2H8N)[Dy(C2O4)2(H2O)]·3H2O
  • M r = 456.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m901-efi1.jpg
  • a = 9.6239 (2) Å
  • b = 11.6030 (2) Å
  • c = 14.3050 (2) Å
  • β = 122.463 (1)°
  • V = 1347.77 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.61 mm−1
  • T = 296 K
  • 0.19 × 0.15 × 0.04 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.374, T max = 0.790
  • 20173 measured reflections
  • 3108 independent reflections
  • 2810 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.047
  • S = 1.06
  • 3108 reflections
  • 211 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Crystal Impact, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026140/wm2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026140/wm2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Multidentate organic ligands are usually engaged in the construction of complexes, among which oxalate is one of the simplest imaginable connectors potentially able to bridge metal ions in a bidentate chelating manner. Some dysprosium(III) oxalate compounds, such as K8[Dy2(C2O4)7].14H2O (Kahwa et al., 1984) and [Dy2(C2O4)(H2O)6].4H2O (Ollendorff et al., 1969; Hansson 1973) have been reported. Oxalates usually represent one of the main end-products of the degradation of some organic ligands, under both oxidative and nonoxidative conditions (Ghosh et al., 2004). For example, decomposition of pyridine-2,4,6-tricarboxylic acid into oxalate has been observed in the presence of cadmium(II) compounds (Zhong et al., 2008). Herein, we report a new three-dimensional oxalate structure, (C2H8N)[Dy(C2O4)2(H2O)].3H2O.

A view on the molecular structure of the title compound, (I), which is isotypic with its Eu(III) analogue (Yang et al., 2005), is presented in Fig. 1. The central DyIII atom displays a distorted tricapped trigonal-prismatic coordination by four oxalate anions and one water molecule. Each DyIII atom is connected to four adjacent DyIII centres through the oxalate bridges resulting in a three-dimensional polymeric network as depicted in Fig. 2. The Dy—Dy separations are 6.2135 (2), 6.2742 (2) and 6.3164 (3) Å, respectively. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen-bonding with each other and with the network. This gives rise to a tightly held network structure.

Experimental

A mixture of 2-carboxymethylsulfanyl nicotinic acid (0.086 g, 0.40 mmol), Dy2O3 (0.093 g, 0.25 mmol) in DMF (5 ml)/H2O (15 ml) was placed in a 25 ml Teflon-lined stainless steel reactor and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Colourless crystals were obtained in approximate 30% yield.

Refinement

The C-bound and ammonium H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.96 Å and N—H 0.87, 0.89 Uiso(H) = 1.2Ueq(C)]. The water H atoms were located from difference maps, and their positions were refined with O—H distances fixed at 0.85 (5) Å with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (1) -x, y+0.5, -z-0.5; (2) -x, -y, -z.
Fig. 2.
A view of the three-dimensional polymeric network of the title compound.

Crystal data

(C2H8N)[Dy(C2O4)2(H2O)]·3H2OF(000) = 884
Mr = 456.70Dx = 2.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9337 reflections
a = 9.6239 (2) Åθ = 2.4–27.6°
b = 11.6030 (2) ŵ = 5.61 mm1
c = 14.3050 (2) ÅT = 296 K
β = 122.463 (1)°Block, colourless
V = 1347.77 (4) Å30.19 × 0.15 × 0.04 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3108 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −12→12
Tmin = 0.374, Tmax = 0.790k = −15→14
20173 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0236P)2 + 1.0326P] where P = (Fo2 + 2Fc2)/3
3108 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.84 e Å3
12 restraintsΔρmin = −0.91 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Dy10.117659 (15)−0.013113 (10)−0.167676 (10)0.01672 (5)
N10.4246 (4)−0.1300 (3)−0.3049 (3)0.0407 (7)
H1A0.393 (5)−0.098 (3)−0.263 (3)0.049*
H1B0.378 (5)−0.095 (3)−0.368 (3)0.049*
O10.2048 (2)−0.21224 (15)−0.15624 (17)0.0250 (4)
O1W0.1053 (3)−0.02065 (19)−0.34320 (18)0.0317 (5)
H1WA0.036 (4)−0.061 (2)−0.396 (2)0.038*
H1WB0.106 (4)0.0401 (18)−0.375 (2)0.038*
O2−0.1030 (2)−0.13712 (15)−0.29291 (17)0.0232 (4)
O2W0.5505 (4)−0.2809 (3)−0.0349 (3)0.0669 (9)
H2WA0.489 (5)−0.291 (5)−0.009 (3)0.080*
H2WB0.624 (4)−0.238 (4)0.016 (3)0.080*
O3−0.1939 (2)−0.31830 (15)−0.32907 (16)0.0219 (4)
O3W−0.1188 (4)−0.1547 (2)−0.5332 (3)0.0576 (8)
H3WA−0.090 (5)−0.222 (2)−0.529 (4)0.069*
H3WB−0.209 (3)−0.155 (3)−0.543 (4)0.069*
O40.1169 (2)−0.39375 (16)−0.20338 (18)0.0278 (5)
O4W0.6648 (5)−0.5050 (3)−0.0068 (3)0.0701 (11)
H4WA0.694 (6)−0.530 (4)0.056 (3)0.084*
H4WB0.596 (5)−0.456 (4)−0.020 (4)0.084*
O50.3400 (3)−0.01122 (16)0.02214 (18)0.0263 (5)
O60.0192 (3)−0.11779 (16)−0.06741 (17)0.0276 (4)
O70.0381 (3)0.11134 (17)−0.06433 (18)0.0300 (5)
O80.3894 (3)−0.01101 (15)−0.14319 (17)0.0226 (4)
C10.0965 (3)−0.2872 (2)−0.2069 (2)0.0197 (5)
C2−0.0829 (3)−0.2435 (2)−0.2832 (2)0.0180 (5)
C30.4856 (4)−0.0001 (2)0.0483 (2)0.0198 (6)
C4−0.0055 (3)−0.0664 (2)−0.0010 (2)0.0220 (6)
C50.3567 (6)−0.2468 (4)−0.3333 (4)0.0761 (15)
H5A0.2387−0.2431−0.37210.091*
H5B0.3984−0.2910−0.26670.091*
H5C0.3882−0.2827−0.37960.091*
C60.6030 (5)−0.1251 (5)−0.2451 (4)0.0710 (14)
H6A0.6384−0.0464−0.22790.085*
H6B0.6396−0.1572−0.29010.085*
H6C0.6490−0.1686−0.17770.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Dy10.01578 (8)0.01427 (7)0.01843 (8)−0.00014 (4)0.00807 (6)−0.00013 (4)
N10.0347 (18)0.0526 (18)0.0363 (17)0.0048 (14)0.0200 (15)−0.0078 (14)
O10.0179 (11)0.0192 (9)0.0295 (11)−0.0011 (8)0.0073 (9)−0.0039 (8)
O1W0.0342 (14)0.0367 (12)0.0218 (11)−0.0059 (10)0.0133 (11)−0.0019 (9)
O20.0213 (11)0.0158 (9)0.0259 (10)0.0016 (7)0.0082 (9)0.0007 (8)
O2W0.053 (2)0.0513 (18)0.066 (2)0.0025 (14)0.0119 (17)−0.0131 (15)
O30.0172 (10)0.0179 (9)0.0272 (11)−0.0014 (7)0.0096 (9)−0.0029 (7)
O3W0.066 (2)0.0331 (13)0.0650 (19)0.0039 (13)0.0292 (19)0.0093 (13)
O40.0228 (11)0.0161 (9)0.0319 (11)0.0016 (8)0.0063 (9)−0.0012 (8)
O4W0.074 (3)0.068 (2)0.0376 (18)0.0164 (15)0.0098 (18)−0.0028 (14)
O50.0184 (11)0.0392 (11)0.0218 (11)−0.0021 (8)0.0111 (9)−0.0007 (8)
O60.0340 (12)0.0239 (10)0.0308 (12)−0.0039 (8)0.0213 (10)−0.0040 (8)
O70.0389 (13)0.0241 (10)0.0397 (13)0.0032 (9)0.0294 (11)0.0059 (9)
O80.0177 (11)0.0297 (10)0.0187 (10)−0.0005 (7)0.0085 (9)−0.0015 (7)
C10.0209 (15)0.0194 (12)0.0179 (13)0.0005 (10)0.0098 (12)0.0006 (10)
C20.0197 (15)0.0195 (12)0.0165 (13)−0.0014 (10)0.0108 (12)−0.0012 (10)
C30.0205 (15)0.0161 (11)0.0200 (14)0.0015 (10)0.0090 (12)0.0005 (9)
C40.0157 (14)0.0231 (14)0.0252 (15)−0.0009 (10)0.0098 (12)0.0000 (10)
C50.096 (4)0.059 (3)0.082 (4)−0.017 (3)0.054 (3)−0.020 (2)
C60.035 (2)0.121 (4)0.052 (3)0.007 (2)0.020 (2)−0.019 (3)

Geometric parameters (Å, °)

Dy1—O3i2.3846 (17)O3W—H3WA0.83 (3)
Dy1—O22.3883 (19)O3W—H3WB0.80 (4)
Dy1—O52.390 (2)O4—C11.249 (3)
Dy1—O62.427 (2)O4—Dy1ii2.4386 (19)
Dy1—O12.4335 (18)O4W—H4WA0.84 (3)
Dy1—O4i2.4386 (19)O4W—H4WB0.82 (4)
Dy1—O82.445 (2)O5—C31.248 (4)
Dy1—O1W2.451 (2)O6—C41.248 (3)
Dy1—O72.464 (2)O7—C4iii1.248 (3)
N1—C61.451 (5)O8—C3iv1.246 (4)
N1—C51.463 (6)C1—C21.551 (4)
N1—H1A0.89 (4)C3—O8iv1.246 (4)
N1—H1B0.87 (4)C3—C3iv1.549 (6)
O1—C11.248 (3)C4—O7iii1.248 (3)
O1W—H1WA0.84 (4)C4—C4iii1.544 (5)
O1W—H1WB0.84 (4)C5—H5A0.9600
O2—C21.245 (3)C5—H5B0.9600
O2W—H2WA0.86 (5)C5—H5C0.9600
O2W—H2WB0.85 (4)C6—H6A0.9600
O3—C21.254 (3)C6—H6B0.9600
O3—Dy1ii2.3846 (17)C6—H6C0.9600
O3i—Dy1—O2135.67 (6)C5—N1—H1B104 (3)
O3i—Dy1—O585.20 (6)H1A—N1—H1B110 (4)
O2—Dy1—O5138.66 (7)C1—O1—Dy1118.16 (17)
O3i—Dy1—O6135.05 (6)Dy1—O1W—H1WA121 (2)
O2—Dy1—O670.73 (7)Dy1—O1W—H1WB121 (2)
O5—Dy1—O674.25 (7)H1WA—O1W—H1WB103 (2)
O3i—Dy1—O1143.39 (7)C2—O2—Dy1119.42 (17)
O2—Dy1—O167.30 (6)H2WA—O2W—H2WB99 (2)
O5—Dy1—O182.32 (7)C2—O3—Dy1ii118.80 (17)
O6—Dy1—O173.44 (7)H3WA—O3W—H3WB107 (3)
O3i—Dy1—O4i67.45 (6)C1—O4—Dy1ii118.02 (17)
O2—Dy1—O4i71.67 (6)H4WA—O4W—H4WB105 (3)
O5—Dy1—O4i139.00 (7)C3—O5—Dy1121.19 (19)
O6—Dy1—O4i103.57 (7)C4—O6—Dy1120.35 (17)
O1—Dy1—O4i137.38 (6)C4iii—O7—Dy1119.20 (17)
O3i—Dy1—O871.14 (6)C3iv—O8—Dy1119.36 (19)
O2—Dy1—O8124.42 (7)O1—C1—O4127.0 (3)
O5—Dy1—O866.48 (7)O1—C1—C2116.6 (2)
O6—Dy1—O8130.33 (7)O4—C1—C2116.4 (2)
O1—Dy1—O872.31 (6)O2—C2—O3126.2 (3)
O4i—Dy1—O8125.97 (7)O2—C2—C1116.7 (2)
O3i—Dy1—O1W81.96 (7)O3—C2—C1117.1 (2)
O2—Dy1—O1W71.05 (7)O8iv—C3—O5127.6 (3)
O5—Dy1—O1W133.30 (8)O8iv—C3—C3iv116.1 (3)
O6—Dy1—O1W140.18 (7)O5—C3—C3iv116.3 (3)
O1—Dy1—O1W81.98 (7)O7iii—C4—O6126.7 (3)
O4i—Dy1—O1W74.28 (8)O7iii—C4—C4iii116.5 (3)
O8—Dy1—O1W66.87 (7)O6—C4—C4iii116.8 (3)
O3i—Dy1—O769.77 (6)N1—C5—H5A109.5
O2—Dy1—O7111.44 (7)N1—C5—H5B109.5
O5—Dy1—O771.94 (7)H5A—C5—H5B109.5
O6—Dy1—O765.99 (7)N1—C5—H5C109.5
O1—Dy1—O7136.30 (7)H5A—C5—H5C109.5
O4i—Dy1—O770.20 (7)H5B—C5—H5C109.5
O8—Dy1—O7124.13 (7)N1—C6—H6A109.5
O1W—Dy1—O7140.87 (7)N1—C6—H6B109.5
C6—N1—C5114.3 (4)H6A—C6—H6B109.5
C6—N1—H1A108 (2)N1—C6—H6C109.5
C5—N1—H1A108 (2)H6A—C6—H6C109.5
C6—N1—H1B112 (3)H6B—C6—H6C109.5
O3i—Dy1—O1—C1−146.82 (18)O3i—Dy1—O7—C4iii−163.0 (2)
O2—Dy1—O1—C1−9.33 (19)O2—Dy1—O7—C4iii64.6 (2)
O5—Dy1—O1—C1142.0 (2)O5—Dy1—O7—C4iii−71.4 (2)
O6—Dy1—O1—C166.3 (2)O6—Dy1—O7—C4iii8.9 (2)
O4i—Dy1—O1—C1−25.9 (2)O1—Dy1—O7—C4iii−14.4 (3)
O8—Dy1—O1—C1−150.3 (2)O4i—Dy1—O7—C4iii124.6 (2)
O1W—Dy1—O1—C1−82.1 (2)O8—Dy1—O7—C4iii−114.7 (2)
O7—Dy1—O1—C188.5 (2)O1W—Dy1—O7—C4iii150.63 (19)
O3i—Dy1—O2—C2156.75 (18)O3i—Dy1—O8—C3iv86.85 (17)
O5—Dy1—O2—C2−34.0 (2)O2—Dy1—O8—C3iv−140.12 (16)
O6—Dy1—O2—C2−67.6 (2)O5—Dy1—O8—C3iv−6.14 (16)
O1—Dy1—O2—C211.96 (19)O6—Dy1—O8—C3iv−46.9 (2)
O4i—Dy1—O2—C2−179.8 (2)O1—Dy1—O8—C3iv−95.32 (18)
O8—Dy1—O2—C258.7 (2)O4i—Dy1—O8—C3iv128.38 (17)
O1W—Dy1—O2—C2101.0 (2)O1W—Dy1—O8—C3iv176.00 (19)
O7—Dy1—O2—C2−120.7 (2)O7—Dy1—O8—C3iv39.15 (19)
O3i—Dy1—O5—C3−65.25 (18)Dy1—O1—C1—O4−173.8 (2)
O2—Dy1—O5—C3122.27 (18)Dy1—O1—C1—C26.6 (3)
O6—Dy1—O5—C3155.14 (19)Dy1ii—O4—C1—O1−171.9 (2)
O1—Dy1—O5—C380.26 (19)Dy1ii—O4—C1—C27.7 (3)
O4i—Dy1—O5—C3−112.15 (19)Dy1—O2—C2—O3166.6 (2)
O8—Dy1—O5—C36.26 (17)Dy1—O2—C2—C1−13.2 (3)
O1W—Dy1—O5—C39.0 (2)Dy1ii—O3—C2—O2165.2 (2)
O7—Dy1—O5—C3−135.52 (19)Dy1ii—O3—C2—C1−15.0 (3)
O3i—Dy1—O6—C41.9 (3)O1—C1—C2—O24.2 (4)
O2—Dy1—O6—C4−134.4 (2)O4—C1—C2—O2−175.4 (2)
O5—Dy1—O6—C468.0 (2)O1—C1—C2—O3−175.6 (2)
O1—Dy1—O6—C4154.5 (2)O4—C1—C2—O34.7 (4)
O4i—Dy1—O6—C4−69.7 (2)Dy1—O5—C3—O8iv174.11 (19)
O8—Dy1—O6—C4106.4 (2)Dy1—O5—C3—C3iv−5.9 (3)
O1W—Dy1—O6—C4−151.28 (19)Dy1—O6—C4—O7iii−171.5 (2)
O7—Dy1—O6—C4−8.9 (2)Dy1—O6—C4—C4iii8.4 (4)

Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, y−1/2, −z−1/2; (iii) −x, −y, −z; (iv) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.89 (4)2.00 (4)2.866 (4)163 (4)
N1—H1A···O1W0.89 (4)2.52 (4)3.090 (4)122 (3)
O1W—H1WA···O3W0.84 (4)2.03 (2)2.857 (4)173 (3)
O4W—H4WB···O2W0.82 (4)2.06 (3)2.767 (4)144 (5)
N1—H1B···O4Wv0.87 (4)1.91 (4)2.759 (5)165 (4)
O1W—H1WB···O3Wvi0.84 (4)1.92 (2)2.744 (3)167 (3)
O2W—H2WB···O3vii0.85 (4)2.06 (2)2.876 (4)161 (5)
O3W—H3WA···O7ii0.85 (4)2.24 (3)2.959 (3)145 (4)
O3W—H3WA···O6viii0.83 (4)2.34 (2)3.110 (3)156 (4)
O3W—H3WB···O4Wix0.80 (5)2.42 (3)2.959 (5)125 (4)
O3W—H3WB···O2Wix0.80 (5)2.49 (2)3.256 (5)160 (4)
O4W—H4WA···O4x0.84 (4)2.10 (3)2.837 (4)147 (5)

Symmetry codes: (v) −x+1, y+1/2, −z−1/2; (vi) −x, −y, −z−1; (vii) x+1, −y−1/2, z+1/2; (ii) −x, y−1/2, −z−1/2; (viii) x, −y−1/2, z−1/2; (ix) x−1, −y−1/2, z−1/2; (x) −x+1, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2367).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crystal Impact (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem.43, 5495–5497. [PubMed]
  • Hansson, E. (1973). Acta Chem. Scand.27, 823–834.
  • Kahwa, I. A., Fronczek, F. R. & Selbin, J. (1984). Inorg. Chim. Acta, 92, 167–172.
  • Ollendorff, W. & Weigel, F. (1969). Inorg. Nuclear Chem. Lett.5, 263–269.
  • Sheldrick, G. M. (1997). SADABS University of Göettingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, Y.-Y., Zai, S.-B., Wong, W.-T. & Ng, S. W. (2005). Acta Cryst. E61, m1912–m1914.
  • Zhong, R. Q., Zou, R. Q., Pandey, D. S., Kiyobayashi, T. & Xu, Q. (2008). Inorg. Chem. Commun.11, 951–953.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography