PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1950–o1951.
Published online 2010 July 7. doi:  10.1107/S1600536810025584
PMCID: PMC3007262

1-[3,5-Bis(4-chloro­phen­yl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Abstract

In the title compound, C17H14Cl2N2O, the dihedral angles between the pyrazole ring and the mean planes of the benzene and chloro-substituted benzene rings are 75.97 (1) and 16.63 (1)° respectively. In the crystal, two weak C—H(...)O inter­molecular hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances = 3.774 (4) and 3.716 (7) Å] are observed.

Related literature

For the anti­tumor, anti­bacterial, anti­fungal, anti­viral, anti­parasitic, anti-tubercular and insecticidal properties of substituted pyrazolines, see: Hes et al. (1978 [triangle]); Manna et al. (2005 [triangle]); Amir et al. (2008 [triangle]). For their anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties, see: Regaila et al. (1979 [triangle]). For their use in organic synthesis, see: Klimova et al. (1999 [triangle]); Bhaskarreddy et al. (1997 [triangle]). For a continuation of the work on pyrazoline derivatives, see: Samshuddin et al. (2010 [triangle]); Fun et al. (2010 [triangle]); Yathirajan et al. (2007a [triangle],b [triangle]); Butcher et al. (2007 [triangle]). For related structures, see: Jian & Wang (2006 [triangle]); Anuradha et al. (2008 [triangle]); Lu et al. (2008 [triangle]); Jian et al. (2006 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1950-scheme1.jpg

Experimental

Crystal data

  • C17H14Cl2N2O
  • M r = 333.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1950-efi1.jpg
  • a = 6.0716 (9) Å
  • b = 13.160 (2) Å
  • c = 19.782 (3) Å
  • β = 98.412 (2)°
  • V = 1563.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 100 K
  • 0.55 × 0.38 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2008 [triangle]) T min = 0.803, T max = 0.917
  • 18906 measured reflections
  • 4809 independent reflections
  • 4141 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.111
  • S = 1.44
  • 4809 reflections
  • 200 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025584/fj2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025584/fj2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks University of Mysore for sabbatical leave.

supplementary crystallographic information

Comment

Due to the interesting activity of variously substituted pyrazolines as biological agents considerable attention has been focused on this class of compounds. They are used as antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal agents (Hes et al., 1978; Manna et al. 2005; Amir et al., 2008).Some of these compounds have also anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties Regaila et al., 1979). Among the existing various pyrazoline type derivatives, 1-acetyl-pyrazolines have been identified as one of the most promising scaffolds. In the field of medicinal chemistry, 1-acetyl-pyrazoline derivatives were found to display anticancer and anti-inflammatory activities. In addition, pyrazolines have played a crucial part in the development of theory in heterocyclic chemistry and also used extensively in organic synthesis (Klimova et al., 1999 & Bhaskarreddy et al., 1997). In continuation of our work on pyrazoline derivatives (Samshuddin et al., 2010, Fun et al., 2010, Yathirajan et al., 2007a,b, Butcher et al., 2007) and in view of the importance of these derivatives, the title compound (I) is synthesized and its crystal structure is reported here.

In (I), two chloro-substituted benzene rings are bonded to opposite ends of an acetyl substituted pyrazole ring in a slightly distorted envelope conformation (Fig. 1). The dihedral angle between the mean planes of the benzene (C4–C9) and chloro substituted benzene rings (C10–C15) with the pyrazole ring are 75.97 ° and 16.63 ° respectively. Two weak C—H···O intermolecular hydrogen bonds (Table 1) and π-π stacking interactions (Table 2) are observed which contribute to crystal packing stability (Fig. 2).

Experimental

A mixture of (2E)-1,3-bis(4-chlorophenyl)prop-2-en-1-one (2.77 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml e thanol in presence of 2 ml glacial acetic acid was refluxed for 5 h (Fig. 3). The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from DMF by slow evaporation method and yield of the compound was 84%.(m.p. 376 K). Analytical data: Found (Calculated): C %: 61.21(61.28); H%: 4.25 (4.23); N%: 8.35(8.41).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.17–1.49Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), C17H14C12N2O, showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound, (I), viewed down the a axis.
Fig. 3.
Reaction scheme of (I).

Crystal data

C17H14Cl2N2OF(000) = 688
Mr = 333.20Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6706 reflections
a = 6.0716 (9) Åθ = 2.6–30.8°
b = 13.160 (2) ŵ = 0.42 mm1
c = 19.782 (3) ÅT = 100 K
β = 98.412 (2)°Block, colourless
V = 1563.6 (4) Å30.55 × 0.38 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer4809 independent reflections
Radiation source: fine-focus sealed tube4141 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 31.3°, θmin = 1.9°
Absorption correction: multi-scan (APEX2; Bruker, 2008)h = −8→8
Tmin = 0.803, Tmax = 0.917k = −18→18
18906 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.44w = 1/[σ2(Fo2) + (0.0475P)2] where P = (Fo2 + 2Fc2)/3
4809 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.05600 (5)0.67498 (2)0.037299 (16)0.02593 (9)
Cl21.07200 (6)0.31318 (3)0.545917 (17)0.03442 (10)
O11.42292 (14)0.36398 (8)0.25597 (5)0.0284 (2)
N11.10312 (16)0.44665 (8)0.22241 (5)0.0223 (2)
N20.90756 (16)0.45866 (8)0.17716 (5)0.0215 (2)
C10.80954 (19)0.53952 (9)0.19412 (6)0.0198 (2)
C20.93583 (19)0.59546 (9)0.25404 (6)0.0227 (2)
H2A0.84380.60660.28950.027*
H2B0.99000.66040.24010.027*
C31.13032 (19)0.52236 (9)0.27851 (6)0.0205 (2)
H31.27300.55780.28020.025*
C41.11491 (18)0.47227 (8)0.34639 (6)0.0185 (2)
C51.29877 (19)0.46775 (9)0.39706 (6)0.0204 (2)
H51.43220.49730.38950.024*
C61.2861 (2)0.41974 (9)0.45879 (6)0.0226 (2)
H61.41000.41640.49240.027*
C71.0866 (2)0.37695 (9)0.46945 (6)0.0227 (2)
C80.9003 (2)0.38125 (9)0.42023 (6)0.0239 (2)
H80.76650.35280.42850.029*
C90.91492 (19)0.42834 (9)0.35855 (6)0.0218 (2)
H90.79080.43080.32490.026*
C100.59722 (19)0.57204 (8)0.15606 (6)0.0189 (2)
C110.4946 (2)0.51628 (9)0.10008 (6)0.0230 (2)
H110.56140.45710.08740.028*
C120.2948 (2)0.54783 (9)0.06325 (6)0.0236 (2)
H120.22820.51080.02570.028*
C130.19554 (19)0.63577 (9)0.08334 (6)0.0200 (2)
C140.2917 (2)0.69243 (9)0.13857 (6)0.0214 (2)
H140.22270.75100.15150.026*
C150.4939 (2)0.66028 (9)0.17462 (6)0.0214 (2)
H150.56100.69820.21160.026*
C161.2506 (2)0.37105 (9)0.21546 (6)0.0233 (2)
C171.1866 (2)0.29880 (10)0.15692 (6)0.0307 (3)
H17A1.30520.25120.15490.046*
H17B1.15970.33630.11490.046*
H17C1.05390.26280.16360.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02224 (16)0.02398 (16)0.02988 (17)0.00321 (10)−0.00184 (11)−0.00217 (11)
Cl20.0471 (2)0.03506 (19)0.02341 (17)−0.00037 (14)0.01295 (14)0.00586 (12)
O10.0234 (5)0.0361 (5)0.0260 (5)0.0063 (4)0.0045 (3)0.0069 (4)
N10.0212 (5)0.0270 (5)0.0184 (5)0.0046 (4)0.0016 (4)−0.0002 (4)
N20.0211 (5)0.0251 (5)0.0181 (5)0.0027 (4)0.0023 (4)0.0016 (4)
C10.0212 (5)0.0202 (5)0.0181 (5)−0.0008 (4)0.0034 (4)0.0016 (4)
C20.0245 (6)0.0202 (6)0.0229 (6)0.0004 (4)0.0010 (4)0.0009 (4)
C30.0194 (5)0.0212 (5)0.0203 (5)−0.0013 (4)0.0011 (4)0.0014 (4)
C40.0183 (5)0.0175 (5)0.0194 (5)−0.0005 (4)0.0020 (4)0.0000 (4)
C50.0171 (5)0.0214 (5)0.0223 (5)−0.0033 (4)0.0015 (4)−0.0019 (4)
C60.0246 (6)0.0223 (5)0.0201 (5)−0.0008 (4)0.0004 (4)−0.0023 (4)
C70.0301 (6)0.0200 (5)0.0194 (5)0.0003 (4)0.0087 (5)−0.0005 (4)
C80.0205 (5)0.0227 (6)0.0300 (6)−0.0016 (4)0.0085 (5)0.0010 (5)
C90.0168 (5)0.0218 (5)0.0266 (6)−0.0009 (4)0.0021 (4)−0.0002 (4)
C100.0200 (5)0.0183 (5)0.0188 (5)−0.0001 (4)0.0046 (4)0.0024 (4)
C110.0228 (6)0.0209 (5)0.0255 (6)0.0024 (4)0.0044 (4)−0.0043 (4)
C120.0227 (6)0.0218 (6)0.0259 (6)0.0000 (4)0.0018 (4)−0.0053 (4)
C130.0188 (5)0.0195 (5)0.0219 (6)0.0003 (4)0.0037 (4)0.0019 (4)
C140.0257 (6)0.0173 (5)0.0215 (6)0.0034 (4)0.0043 (4)0.0011 (4)
C150.0273 (6)0.0187 (5)0.0177 (5)0.0009 (4)0.0018 (4)0.0010 (4)
C160.0240 (6)0.0272 (6)0.0202 (6)0.0055 (5)0.0083 (4)0.0064 (4)
C170.0373 (7)0.0318 (7)0.0239 (6)0.0122 (6)0.0069 (5)0.0006 (5)

Geometric parameters (Å, °)

Cl1—C131.7382 (12)C6—H60.9300
Cl2—C71.7435 (12)C7—C81.3817 (17)
O1—C161.2249 (15)C8—C91.3829 (17)
N1—C161.3588 (15)C8—H80.9300
N1—N21.3875 (14)C9—H90.9300
N1—C31.4826 (15)C10—C151.3946 (16)
N2—C11.2875 (14)C10—C111.3968 (16)
C1—C101.4587 (16)C11—C121.3842 (17)
C1—C21.5063 (16)C11—H110.9300
C2—C31.5449 (16)C12—C131.3895 (16)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.3799 (17)
C3—C41.5110 (16)C14—C151.3923 (17)
C3—H30.9800C14—H140.9300
C4—C51.3881 (16)C15—H150.9300
C4—C91.3972 (16)C16—C171.5049 (18)
C5—C61.3871 (16)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.3795 (17)C17—H17C0.9600
C16—N1—N2122.18 (10)C7—C8—H8120.4
C16—N1—C3124.39 (10)C9—C8—H8120.4
N2—N1—C3113.42 (9)C8—C9—C4120.47 (11)
C1—N2—N1108.10 (10)C8—C9—H9119.8
N2—C1—C10121.01 (11)C4—C9—H9119.8
N2—C1—C2114.05 (10)C15—C10—C11118.71 (11)
C10—C1—C2124.93 (10)C15—C10—C1120.40 (11)
C1—C2—C3102.71 (9)C11—C10—C1120.88 (10)
C1—C2—H2A111.2C12—C11—C10120.98 (11)
C3—C2—H2A111.2C12—C11—H11119.5
C1—C2—H2B111.2C10—C11—H11119.5
C3—C2—H2B111.2C11—C12—C13118.86 (11)
H2A—C2—H2B109.1C11—C12—H12120.6
N1—C3—C4110.94 (9)C13—C12—H12120.6
N1—C3—C2100.81 (9)C14—C13—C12121.71 (11)
C4—C3—C2113.97 (9)C14—C13—Cl1119.46 (9)
N1—C3—H3110.3C12—C13—Cl1118.82 (9)
C4—C3—H3110.3C13—C14—C15118.71 (11)
C2—C3—H3110.3C13—C14—H14120.6
C5—C4—C9119.03 (10)C15—C14—H14120.6
C5—C4—C3120.83 (10)C14—C15—C10121.01 (11)
C9—C4—C3120.13 (10)C14—C15—H15119.5
C6—C5—C4120.86 (11)C10—C15—H15119.5
C6—C5—H5119.6O1—C16—N1120.13 (12)
C4—C5—H5119.6O1—C16—C17123.72 (11)
C7—C6—C5118.91 (11)N1—C16—C17116.14 (11)
C7—C6—H6120.5C16—C17—H17A109.5
C5—C6—H6120.5C16—C17—H17B109.5
C6—C7—C8121.49 (11)H17A—C17—H17B109.5
C6—C7—Cl2119.10 (10)C16—C17—H17C109.5
C8—C7—Cl2119.39 (9)H17A—C17—H17C109.5
C7—C8—C9119.23 (11)H17B—C17—H17C109.5
C16—N1—N2—C1−176.08 (10)Cl2—C7—C8—C9−177.42 (9)
C3—N1—N2—C15.01 (13)C7—C8—C9—C4−0.83 (18)
N1—N2—C1—C10−179.54 (10)C5—C4—C9—C80.14 (17)
N1—N2—C1—C21.70 (13)C3—C4—C9—C8179.19 (11)
N2—C1—C2—C3−7.14 (13)N2—C1—C10—C15−179.43 (11)
C10—C1—C2—C3174.16 (10)C2—C1—C10—C15−0.81 (17)
C16—N1—C3—C4−66.76 (14)N2—C1—C10—C11−0.06 (17)
N2—N1—C3—C4112.11 (10)C2—C1—C10—C11178.56 (11)
C16—N1—C3—C2172.18 (11)C15—C10—C11—C120.38 (18)
N2—N1—C3—C2−8.95 (12)C1—C10—C11—C12−179.00 (11)
C1—C2—C3—N18.80 (11)C10—C11—C12—C13−0.77 (18)
C1—C2—C3—C4−110.09 (11)C11—C12—C13—C140.43 (18)
N1—C3—C4—C5113.38 (12)C11—C12—C13—Cl1−179.69 (9)
C2—C3—C4—C5−133.67 (11)C12—C13—C14—C150.28 (18)
N1—C3—C4—C9−65.65 (13)Cl1—C13—C14—C15−179.60 (9)
C2—C3—C4—C947.30 (15)C13—C14—C15—C10−0.67 (18)
C9—C4—C5—C60.53 (17)C11—C10—C15—C140.35 (17)
C3—C4—C5—C6−178.51 (11)C1—C10—C15—C14179.73 (11)
C4—C5—C6—C7−0.50 (17)N2—N1—C16—O1178.94 (10)
C5—C6—C7—C8−0.21 (18)C3—N1—C16—O1−2.28 (18)
C5—C6—C7—Cl2178.08 (9)N2—N1—C16—C17−1.78 (16)
C6—C7—C8—C90.87 (18)C3—N1—C16—C17177.00 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1i0.932.803.5996 (13)145
C9—H9···O1ii0.932.593.4620 (15)156

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1, y, z.

Table 2 Cg···Cg π stacking interactions,

Cg1 is the centroid of the ring N1/N2/C1/C2/C3, Cg2 is the centroid of the ring C4–C9 and Cg3 is the centroid of the ring C10–C125.

CgX···CgY (Å)Cg1···Perp (Å)Cg2···Perp (Å)Cg3···Perp (Å)
Cg1···Cg2i3.774 (4)-0.283 (8)-2.559 (6)
Cg1···Cg3ii3.716 (7)-3.572 (2)-3.594 (1)

Symmetry codes: (i) x, y, z; (ii) 1 + x, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2320).

References

  • Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett.18, 918–922. [PubMed]
  • Anuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2160. [PMC free article] [PubMed]
  • Bhaskarreddy, D., Chandrasekhar, B. N., Padmavathi, V. & Sumathi, R. P. (1997). Synthesis, 3, 491–494.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA
  • Butcher, R. J., Jasinski, J. P., Prasad, D. J., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4005–o4006.
  • Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583. [PMC free article] [PubMed]
  • Hes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem.26, 915–918.
  • Jian, F.-F. & Wang, J. (2006). Acta Cryst. E62, o5303–o5304.
  • Jian, F.-F., Wang, J. & Xiao, H.-L. (2006). Acta Cryst. E62, o4771–o4772.
  • Klimova, E. I., Marcos, M., Klimova, T. B., Cecilio, A. T., Ruben, A. T. & Lena, R. R. (1999). J. Organomet. Chem.585, 106–111.
  • Lu, Z.-K., Diao, H.-L., Li, S. & He, B. (2008). Acta Cryst. E64, o1638. [PMC free article] [PubMed]
  • Manna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Secci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett.15, 4632–4635. [PubMed]
  • Regaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem.20, 197–202.
  • Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-F., Zhu, W., Yang, X. & Zhou, L.-J. (2005). Acta Cryst. E61, o3985–o3986.
  • Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o2718.
  • Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o2566.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography