PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m996.
Published online 2010 July 24. doi:  10.1107/S1600536810028692
PMCID: PMC3007259

Dibromido(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)zinc(II)

Abstract

The asymmetric unit of the title compound, [ZnBr2(C12H12N2)], contains two half-mol­ecules; both are completed by crystallographic twofold axes running through the ZnII atoms which are coordinated by an N,N′-bidentate 4,4′-dimethyl-2,2′-bipyridine ligand and two Br ions, resulting in distorted ZnN2Br2 tetra­hedral coordination geometries. In the crystal, C—H(...)Br inter­actions link the mol­ecules.

Related literature

For related structures, see: Ahmadi et al. (2008 [triangle]); Amani et al. (2009 [triangle]); Bellusci et al. (2008 [triangle]); Hojjat Kashani et al. (2008 [triangle]); Kalateh et al. (2008 [triangle], 2010 [triangle]); Sakamoto et al. (2004 [triangle]); Sofetis et al. (2006 [triangle]); Willett et al. (2001 [triangle]); Yoshikawa et al. (2003 [triangle]); Yousefi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m996-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C12H12N2)]
  • M r = 409.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m996-efi1.jpg
  • a = 13.801 (3) Å
  • b = 8.2454 (16) Å
  • c = 13.716 (3) Å
  • β = 117.47 (3)°
  • V = 1384.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.52 mm−1
  • T = 120 K
  • 0.30 × 0.22 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.157, T max = 0.479
  • 8352 measured reflections
  • 3560 independent reflections
  • 2963 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.099
  • S = 1.07
  • 3560 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028692/hb5556sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028692/hb5556Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Damghan University for financial support.

supplementary crystallographic information

Comment

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003) and cadmium (Kalateh et al., 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two half-molecule. The ZnII atom is for-coordinated in distorted tetragonal configurations by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine and two Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) may stabilize the structure (Fig. 2).

Experimental

A solution of 4,4'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in methanol (5 ml) at room temperature. Colourless prisms of (I) were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.35 g, 77.7%).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms with suffix a are generated by (1–x, y, 1/2–z); those with suffix b are generated by (–x, y, 1/2–z).
Fig. 2.
Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[ZnBr2(C12H12N2)]F(000) = 792
Mr = 409.43Dx = 1.964 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 984 reflections
a = 13.801 (3) Åθ = 2.5–29.2°
b = 8.2454 (16) ŵ = 7.52 mm1
c = 13.716 (3) ÅT = 120 K
β = 117.47 (3)°Prism, colorless
V = 1384.9 (6) Å30.30 × 0.22 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3560 independent reflections
Radiation source: fine-focus sealed tube2963 reflections with I > 2σ(I)
graphiteRint = 0.050
phi and ω scansθmax = 29.2°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −13→18
Tmin = 0.157, Tmax = 0.479k = −11→11
8352 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0449P)2 + 2.823P] where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −1.04 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3828 (3)0.7308 (4)0.0326 (3)0.0225 (7)
H10.36500.83270.00010.027*
C20.3490 (3)0.5946 (5)−0.0343 (3)0.0251 (8)
H20.30820.6056−0.11010.030*
C30.3767 (3)0.4417 (4)0.0131 (3)0.0234 (7)
C40.3428 (4)0.2903 (5)−0.0556 (4)0.0313 (9)
H4A0.29790.2252−0.03450.038*
H4B0.40650.2299−0.04440.038*
H4C0.30220.3191−0.13180.038*
C50.4366 (3)0.4324 (4)0.1268 (3)0.0220 (7)
H50.45620.33190.16110.026*
C60.4671 (3)0.5733 (4)0.1892 (3)0.0185 (7)
C70.1273 (3)0.7510 (4)0.1512 (3)0.0231 (7)
H70.15120.85210.14110.028*
C80.1556 (3)0.6153 (5)0.1110 (3)0.0236 (7)
H80.19770.62600.07460.028*
C90.1209 (3)0.4623 (4)0.1250 (3)0.0208 (7)
C100.1447 (4)0.3130 (5)0.0775 (4)0.0287 (8)
H10C0.13710.33700.00580.034*
H10B0.09430.22890.07180.034*
H10A0.21790.27740.12440.034*
C110.0594 (3)0.4535 (4)0.1817 (3)0.0218 (7)
H110.03570.35340.19380.026*
C120.0334 (3)0.5942 (4)0.2202 (3)0.0181 (7)
N10.4399 (3)0.7211 (3)0.1415 (3)0.0186 (6)
N20.0668 (3)0.7419 (3)0.2042 (3)0.0186 (6)
Zn10.50000.91089 (6)0.25000.02024 (14)
Zn20.00000.93068 (6)0.25000.01997 (14)
Br10.37461 (4)1.05907 (4)0.28513 (4)0.02607 (11)
Br20.12396 (4)1.07654 (4)0.40271 (4)0.02828 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0274 (19)0.0185 (15)0.0221 (19)0.0011 (14)0.0119 (16)0.0019 (13)
C20.0263 (19)0.0284 (18)0.0186 (18)−0.0019 (15)0.0085 (15)−0.0024 (14)
C30.0261 (19)0.0232 (16)0.0232 (19)−0.0021 (14)0.0134 (16)−0.0059 (14)
C40.035 (2)0.0265 (18)0.026 (2)−0.0044 (17)0.0089 (18)−0.0115 (16)
C50.0271 (19)0.0141 (14)0.0249 (19)−0.0016 (13)0.0121 (16)−0.0035 (12)
C60.0262 (18)0.0125 (13)0.0187 (18)−0.0021 (12)0.0118 (15)−0.0013 (12)
C70.0268 (19)0.0184 (15)0.025 (2)−0.0015 (14)0.0127 (16)0.0010 (13)
C80.028 (2)0.0240 (16)0.025 (2)0.0003 (15)0.0171 (17)0.0010 (14)
C90.0227 (18)0.0196 (15)0.0191 (18)0.0039 (13)0.0087 (15)−0.0007 (13)
C100.033 (2)0.0238 (17)0.033 (2)0.0066 (16)0.0183 (19)−0.0023 (15)
C110.0289 (19)0.0138 (14)0.0249 (19)0.0006 (13)0.0142 (16)−0.0001 (12)
C120.0227 (17)0.0133 (14)0.0192 (18)0.0012 (12)0.0104 (15)0.0003 (11)
N10.0222 (15)0.0147 (12)0.0177 (15)−0.0004 (11)0.0082 (12)−0.0013 (10)
N20.0253 (16)0.0129 (12)0.0175 (15)−0.0004 (11)0.0097 (13)0.0004 (10)
Zn10.0277 (3)0.0107 (2)0.0231 (3)0.0000.0123 (3)0.000
Zn20.0274 (3)0.0106 (2)0.0212 (3)0.0000.0106 (3)0.000
Br10.0329 (2)0.01709 (16)0.0322 (2)0.00397 (14)0.01838 (17)0.00109 (14)
Br20.0317 (2)0.01954 (17)0.0281 (2)−0.00180 (14)0.00900 (17)−0.00723 (14)

Geometric parameters (Å, °)

C1—N11.332 (5)C8—H80.9300
C1—C21.388 (5)C9—C111.394 (5)
C1—H10.9300C9—C101.498 (5)
C2—C31.388 (5)C10—H10C0.9600
C2—H20.9300C10—H10B0.9600
C3—C51.390 (6)C10—H10A0.9600
C3—C41.503 (5)C11—C121.389 (5)
C4—H4A0.9600C11—H110.9300
C4—H4B0.9600C12—N21.355 (4)
C4—H4C0.9600C12—C12ii1.488 (7)
C5—C61.387 (5)Zn1—N12.053 (3)
C5—H50.9300Zn2—N22.050 (3)
C6—N11.351 (4)Zn1—N1i2.053 (3)
C6—C6i1.487 (8)Zn1—Br1i2.3428 (6)
C7—N21.339 (5)Zn1—Br12.3428 (6)
C7—C81.380 (5)Zn2—N2ii2.050 (3)
C7—H70.9300Zn2—Br22.3356 (9)
C8—C91.393 (5)Zn2—Br2ii2.3356 (9)
N1—C1—C2122.5 (3)C9—C10—H10C109.5
N1—C1—H1118.7C9—C10—H10B109.5
C2—C1—H1118.7H10C—C10—H10B109.5
C1—C2—C3119.3 (4)C9—C10—H10A109.5
C1—C2—H2120.4H10C—C10—H10A109.5
C3—C2—H2120.4H10B—C10—H10A109.5
C2—C3—C5117.9 (3)C12—C11—C9120.0 (3)
C2—C3—C4121.4 (4)C12—C11—H11120.0
C5—C3—C4120.6 (4)C9—C11—H11120.0
C3—C4—H4A109.5N2—C12—C11121.5 (3)
C3—C4—H4B109.5N2—C12—C12ii115.6 (2)
H4A—C4—H4B109.5C11—C12—C12ii122.9 (2)
C3—C4—H4C109.5C1—N1—C6119.0 (3)
H4A—C4—H4C109.5C1—N1—Zn1126.8 (2)
H4B—C4—H4C109.5C6—N1—Zn1114.1 (2)
C6—C5—C3120.0 (3)C7—N2—C12118.8 (3)
C6—C5—H5120.0C7—N2—Zn2127.2 (2)
C3—C5—H5120.0C12—N2—Zn2113.5 (2)
N1—C6—C5121.3 (4)N1—Zn1—N1i80.61 (17)
N1—C6—C6i115.6 (2)N1—Zn1—Br1i109.77 (9)
C5—C6—C6i123.1 (2)N1i—Zn1—Br1i117.20 (9)
N2—C7—C8122.2 (3)N1—Zn1—Br1117.20 (9)
N2—C7—H7118.9N1i—Zn1—Br1109.77 (9)
C8—C7—H7118.9Br1i—Zn1—Br1117.13 (3)
C7—C8—C9120.1 (3)N2—Zn2—N2ii81.15 (17)
C7—C8—H8119.9N2—Zn2—Br2114.76 (9)
C9—C8—H8119.9N2ii—Zn2—Br2111.31 (9)
C8—C9—C11117.4 (3)N2—Zn2—Br2ii111.31 (9)
C8—C9—C10121.8 (3)N2ii—Zn2—Br2ii114.76 (9)
C11—C9—C10120.8 (3)Br2—Zn2—Br2ii118.01 (4)
N1—C1—C2—C3−1.1 (6)C6i—C6—N1—Zn11.4 (5)
C1—C2—C3—C50.8 (6)C8—C7—N2—C120.9 (6)
C1—C2—C3—C4−179.6 (4)C8—C7—N2—Zn2−170.8 (3)
C2—C3—C5—C6−0.2 (6)C11—C12—N2—C7−0.8 (6)
C4—C3—C5—C6−179.9 (4)C12ii—C12—N2—C7179.9 (4)
C3—C5—C6—N1−0.2 (6)C11—C12—N2—Zn2172.0 (3)
C3—C5—C6—C6i−178.8 (4)C12ii—C12—N2—Zn2−7.3 (5)
N2—C7—C8—C90.0 (6)C1—N1—Zn1—N1i−177.6 (4)
C7—C8—C9—C11−1.0 (6)C6—N1—Zn1—N1i−0.5 (2)
C7—C8—C9—C10176.7 (4)C1—N1—Zn1—Br1i−62.0 (3)
C8—C9—C11—C121.0 (6)C6—N1—Zn1—Br1i115.1 (3)
C10—C9—C11—C12−176.7 (4)C1—N1—Zn1—Br174.9 (3)
C9—C11—C12—N2−0.2 (6)C6—N1—Zn1—Br1−108.0 (3)
C9—C11—C12—C12ii179.1 (4)C7—N2—Zn2—N2ii174.8 (4)
C2—C1—N1—C60.7 (6)C12—N2—Zn2—N2ii2.71 (19)
C2—C1—N1—Zn1177.7 (3)C7—N2—Zn2—Br2−75.8 (3)
C5—C6—N1—C1−0.1 (6)C12—N2—Zn2—Br2112.2 (3)
C6i—C6—N1—C1178.7 (4)C7—N2—Zn2—Br2ii61.5 (3)
C5—C6—N1—Zn1−177.4 (3)C12—N2—Zn2—Br2ii−110.5 (3)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···Br1iii0.962.893.772 (5)152

Symmetry codes: (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5556).

References

  • Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. [PMC free article] [PubMed]
  • Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem.62, 1939–1950.
  • Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des.8, 3114–3122.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. [PMC free article] [PubMed]
  • Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512. [PMC free article] [PubMed]
  • Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. [PMC free article] [PubMed]
  • Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.
  • Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem.40, 4342–4352. [PubMed]
  • Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.
  • Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography