PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2084–o2085.
Published online 2010 July 24. doi:  10.1107/S1600536810028345
PMCID: PMC3007256

16-[(E)-Benzyl­idene]-2-hy­droxy-12,13-diphenyl-1,11-diaza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

Abstract

In the title compound, C35H28N2O3, an intra­molecular O—H(...)N hydrogen bonds generates a five-membered ring, producing an S(5) ring motif. The piperidone ring adopts a half-chair conformation and the two pyrrolidine rings adopt an envelope conformation. The dihedral angles formed between adjacent benzene rings are 74.39 (5) and 37.70 (6)°. In the crystal crystal, inter­molecular C—H(...)O hydrogen bonds link mol­ecules into dimers, which are further inter­connected into two-dimensional networks parallel to the ac plane by inter­molecular C—H(...)O hydrogen bonds. The crystal structure is consolidated by weak C—H(...)π inter­actions.

Related literature

For general background to and applications of the title compound, see: Daly et al. (1986 [triangle]); Monlineux & Pelletier (1987 [triangle]); Padwa (1984 [triangle]); Tsuge & Kanemasa (1989 [triangle]); Waldmann (1995 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995 [triangle]). For closely related structures, see: Kumar et al. (2010a [triangle],b [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2084-scheme1.jpg

Experimental

Crystal data

  • C35H28N2O3
  • M r = 524.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2084-efi1.jpg
  • a = 8.6319 (2) Å
  • b = 11.8130 (2) Å
  • c = 14.3562 (3) Å
  • α = 75.395 (1)°
  • β = 72.876 (1)°
  • γ = 76.185 (1)°
  • V = 1332.18 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.32 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.973, T max = 0.980
  • 35745 measured reflections
  • 10026 independent reflections
  • 8085 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.136
  • S = 1.02
  • 10026 reflections
  • 369 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810028345/rz2477sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028345/rz2477Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811016). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). RSK thanks USM for the award of a post doctoral fellowship and JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The 1,3-dipolar cycloaddition of azomethine ylides with olefinic dipolarophiles offers an excellent route for the construction of pyrrolidines (Tsuge & Kanemasa, 1989; Padwa, 1984). The chemistry of azomethine ylides has gained significance in recent years as it serves as an important route for the construction of nitrogen containing five-membered heterocycles, which are often central ring systems of numerous natural products (Daly et al., 1986; Waldmann, 1995). The pyrrolidine moiety is one of the significant core structures among the most extensively studied natural and synthetic heterocyclic compounds with remarkable medicinal activities (Monlineux & Pelletier, 1987).

In the title compound (Fig. 1), an intramolecular O1—H1O1···N1 hydrogen bond (Table 1) forms a five-membered ring, generating an S(5) hydrogen bond ring motif (Bernstein et al., 1995). The 4-piperidone ring (N2/C15/C25-C28) adopts a half-chair conformation, with puckering parameters Q = 0.6229 (10) Å, θ = 137.36 (9)° and [var phi] = 236.70 (14)° (Cremer & Pople, 1975). The two fused pyrrolidine rings (N1/C7/C8/C15/C16 and N2/C15/C16/C17/C25) adopt an envelope conformation, with atoms C8 and C25 as the flap atoms, respectively. The puckering parameters are Q = 0.4071 (10) Å, [var phi] = 248.43 (14)° for the N1/C7/C8/C15/C16 ring and Q = 0.4468 (10) Å, [var phi] = 151.15 (13)° for the N2/C15/C16/C17/C25 pyrrolidine ring. The dihedral angles formed between benzene rings A/B and C/D are 74.39 (5) and 37.70 (6)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Kumar et al., 2010a,b).

In the crystal structure (Fig. 2), intermolecular C35—H35A···O3 hydrogen bonds (Table 1) link neighbouring molecules into dimers. Intermolecular C7—H7A···O1 and C10—H10A···O1 hydrogen bonds (Table 1) further interconnect these dimers into two-dimensional networks parallel to the ac plane. The crystal structure is further stabilized by weak intermolecular C13—H13A···Cg1, C20—H20A···Cg2 and C33—H33A···Cg2 interactions, where Cg1 and Cg2 are the centroids of the C30-C35 and C9-C14 benzene rings, respectively.

Experimental

A mixture of 3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)- pyridinone (0.100 g, 0.363 mmol), ninhydrin (0.065 g, 0.363 mmol) and phenylglycine (0.055 g, 0.363 mmol) were dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The solid precipitated was filtered and washed with water to afford the product which was recrystallized from ethyl acetate to reveal the title compound as colourless crystals.

Refinement

Atoms H1N1 and H1O1 were located from a difference Fourier map [N1—H1N1 = 0.904 (15) Å and O1—H1O1 = 0.863 (18) Å] and allowed to refine freely. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
The crystal structure of the title compound, viewed down the b axis, showing a two-dimensional hydrogen-bonded network parallel to the ac plane. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C35H28N2O3Z = 2
Mr = 524.59F(000) = 552
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6319 (2) ÅCell parameters from 9908 reflections
b = 11.8130 (2) Åθ = 2.5–33.0°
c = 14.3562 (3) ŵ = 0.08 mm1
α = 75.395 (1)°T = 100 K
β = 72.876 (1)°Block, colourless
γ = 76.185 (1)°0.32 × 0.30 × 0.25 mm
V = 1332.18 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer10026 independent reflections
Radiation source: fine-focus sealed tube8085 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 33.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −13→13
Tmin = 0.973, Tmax = 0.980k = −15→18
35745 measured reflectionsl = −21→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0752P)2 + 0.3278P] where P = (Fo2 + 2Fc2)/3
10026 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.37832 (9)0.64683 (7)0.04084 (5)0.01893 (14)
O2−0.08312 (9)0.57843 (7)0.29194 (6)0.02456 (16)
O30.17358 (9)0.37449 (7)0.41701 (5)0.01996 (15)
N10.15205 (10)0.51021 (7)0.10911 (6)0.01565 (15)
N20.46901 (10)0.57415 (7)0.18617 (6)0.01554 (15)
C10.20254 (13)0.27449 (9)−0.01412 (8)0.02146 (19)
H1A0.30560.2903−0.05190.026*
C20.12201 (16)0.20652 (10)−0.04456 (10)0.0284 (2)
H2A0.17150.1772−0.10270.034*
C3−0.03146 (16)0.18240 (10)0.01147 (10)0.0290 (2)
H3A−0.08340.1350−0.00800.035*
C4−0.10753 (14)0.22921 (10)0.09674 (9)0.0264 (2)
H4A−0.21160.21450.13360.032*
C5−0.02863 (12)0.29778 (9)0.12704 (8)0.02011 (18)
H5A−0.08080.32990.18360.024*
C60.12871 (11)0.31887 (8)0.07312 (7)0.01559 (16)
C70.22380 (11)0.38226 (8)0.11019 (7)0.01398 (16)
H7A0.33610.37680.06740.017*
C80.23468 (11)0.33085 (8)0.21896 (7)0.01388 (15)
H8A0.12200.32790.25980.017*
C90.33395 (11)0.20676 (8)0.23764 (7)0.01492 (16)
C100.47150 (12)0.16476 (8)0.16708 (8)0.01862 (18)
H10A0.50690.21470.10670.022*
C110.55647 (13)0.04853 (9)0.18631 (9)0.0231 (2)
H11A0.64880.02190.13900.028*
C120.50438 (14)−0.02770 (9)0.27554 (9)0.0245 (2)
H12A0.5611−0.10520.28800.029*
C130.36703 (14)0.01263 (9)0.34600 (8)0.0241 (2)
H13A0.3310−0.03810.40580.029*
C140.28311 (13)0.12884 (9)0.32735 (8)0.01999 (18)
H14A0.19160.15520.37530.024*
C150.29208 (11)0.43124 (8)0.24213 (7)0.01354 (15)
C160.19664 (11)0.54615 (8)0.18681 (7)0.01378 (15)
C170.32511 (11)0.63251 (8)0.14526 (7)0.01468 (16)
C180.23354 (12)0.74740 (8)0.17864 (7)0.01695 (17)
C190.28408 (14)0.85751 (9)0.15035 (9)0.0227 (2)
H19A0.38790.86630.10910.027*
C200.17512 (16)0.95369 (10)0.18545 (10)0.0291 (2)
H20A0.20581.02810.16660.035*
C210.01984 (16)0.94031 (11)0.24878 (11)0.0319 (3)
H21A−0.05081.00590.27180.038*
C22−0.03022 (14)0.83114 (10)0.27771 (9)0.0261 (2)
H22A−0.13290.82200.32040.031*
C230.07820 (12)0.73506 (9)0.24084 (7)0.01799 (17)
C240.04469 (11)0.61565 (8)0.24970 (7)0.01689 (17)
C250.47371 (11)0.44701 (8)0.19245 (7)0.01582 (16)
H25A0.54660.39760.23280.019*
H25B0.50990.42720.12690.019*
C260.45734 (12)0.59095 (8)0.28658 (7)0.01673 (17)
H26A0.43520.67560.28600.020*
H26B0.56330.55840.30190.020*
C270.32554 (11)0.53394 (8)0.36921 (7)0.01594 (16)
C280.25652 (11)0.43883 (8)0.35060 (7)0.01509 (16)
C290.25868 (13)0.56680 (9)0.45800 (7)0.01835 (17)
H29A0.17390.52840.49990.022*
C300.30193 (13)0.65502 (9)0.49733 (7)0.01963 (18)
C310.46073 (14)0.68084 (9)0.47512 (8)0.0221 (2)
H31A0.54590.64420.42950.027*
C320.49189 (15)0.76115 (10)0.52097 (9)0.0255 (2)
H32A0.59780.77720.50600.031*
C330.36614 (17)0.81721 (10)0.58864 (9)0.0282 (2)
H33A0.38730.87060.61920.034*
C340.20874 (18)0.79293 (12)0.61028 (9)0.0321 (3)
H34A0.12350.83130.65480.039*
C350.17695 (15)0.71182 (11)0.56616 (8)0.0273 (2)
H35A0.07110.69510.58270.033*
H1O10.306 (2)0.6203 (15)0.0257 (13)0.039 (4)*
H1N10.0415 (18)0.5227 (13)0.1190 (11)0.023 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0219 (3)0.0209 (3)0.0135 (3)−0.0075 (3)−0.0018 (2)−0.0021 (2)
O20.0173 (3)0.0246 (4)0.0276 (4)−0.0041 (3)0.0013 (3)−0.0054 (3)
O30.0236 (3)0.0197 (3)0.0165 (3)−0.0087 (3)−0.0021 (3)−0.0024 (3)
N10.0182 (3)0.0117 (3)0.0182 (4)−0.0011 (3)−0.0068 (3)−0.0038 (3)
N20.0160 (3)0.0140 (3)0.0167 (4)−0.0034 (3)−0.0031 (3)−0.0037 (3)
C10.0224 (4)0.0217 (5)0.0223 (5)0.0003 (3)−0.0079 (4)−0.0090 (4)
C20.0363 (6)0.0234 (5)0.0324 (6)0.0040 (4)−0.0186 (5)−0.0148 (4)
C30.0388 (6)0.0173 (4)0.0413 (7)−0.0053 (4)−0.0270 (5)−0.0041 (4)
C40.0266 (5)0.0228 (5)0.0340 (6)−0.0103 (4)−0.0164 (4)0.0027 (4)
C50.0192 (4)0.0204 (4)0.0220 (5)−0.0056 (3)−0.0070 (3)−0.0024 (4)
C60.0175 (4)0.0125 (4)0.0176 (4)−0.0014 (3)−0.0065 (3)−0.0030 (3)
C70.0156 (4)0.0118 (4)0.0147 (4)−0.0020 (3)−0.0036 (3)−0.0035 (3)
C80.0154 (4)0.0116 (3)0.0144 (4)−0.0025 (3)−0.0030 (3)−0.0028 (3)
C90.0161 (4)0.0115 (4)0.0182 (4)−0.0034 (3)−0.0056 (3)−0.0024 (3)
C100.0170 (4)0.0131 (4)0.0237 (5)−0.0028 (3)−0.0027 (3)−0.0026 (3)
C110.0181 (4)0.0151 (4)0.0338 (6)−0.0006 (3)−0.0044 (4)−0.0054 (4)
C120.0249 (5)0.0130 (4)0.0367 (6)−0.0018 (3)−0.0139 (4)−0.0006 (4)
C130.0303 (5)0.0168 (4)0.0248 (5)−0.0061 (4)−0.0111 (4)0.0034 (4)
C140.0244 (4)0.0164 (4)0.0182 (4)−0.0046 (3)−0.0053 (3)−0.0007 (3)
C150.0151 (4)0.0114 (3)0.0141 (4)−0.0021 (3)−0.0033 (3)−0.0031 (3)
C160.0149 (4)0.0113 (4)0.0145 (4)−0.0020 (3)−0.0024 (3)−0.0030 (3)
C170.0165 (4)0.0130 (4)0.0139 (4)−0.0037 (3)−0.0020 (3)−0.0027 (3)
C180.0212 (4)0.0129 (4)0.0184 (4)−0.0027 (3)−0.0076 (3)−0.0031 (3)
C190.0280 (5)0.0151 (4)0.0281 (5)−0.0056 (4)−0.0122 (4)−0.0023 (4)
C200.0376 (6)0.0141 (4)0.0421 (7)−0.0027 (4)−0.0198 (5)−0.0074 (4)
C210.0360 (6)0.0198 (5)0.0449 (7)0.0053 (4)−0.0162 (5)−0.0178 (5)
C220.0247 (5)0.0238 (5)0.0315 (6)0.0038 (4)−0.0078 (4)−0.0149 (4)
C230.0203 (4)0.0151 (4)0.0196 (4)−0.0001 (3)−0.0061 (3)−0.0067 (3)
C240.0169 (4)0.0158 (4)0.0167 (4)−0.0004 (3)−0.0035 (3)−0.0040 (3)
C250.0145 (4)0.0138 (4)0.0186 (4)−0.0019 (3)−0.0024 (3)−0.0047 (3)
C260.0170 (4)0.0164 (4)0.0181 (4)−0.0048 (3)−0.0048 (3)−0.0036 (3)
C270.0177 (4)0.0150 (4)0.0163 (4)−0.0036 (3)−0.0057 (3)−0.0027 (3)
C280.0161 (4)0.0137 (4)0.0157 (4)−0.0020 (3)−0.0042 (3)−0.0037 (3)
C290.0236 (4)0.0166 (4)0.0162 (4)−0.0060 (3)−0.0053 (3)−0.0030 (3)
C300.0279 (5)0.0175 (4)0.0154 (4)−0.0071 (3)−0.0066 (3)−0.0024 (3)
C310.0258 (5)0.0205 (4)0.0238 (5)−0.0030 (4)−0.0134 (4)−0.0033 (4)
C320.0321 (5)0.0220 (5)0.0288 (5)−0.0077 (4)−0.0184 (4)−0.0005 (4)
C330.0472 (7)0.0222 (5)0.0221 (5)−0.0146 (5)−0.0132 (5)−0.0032 (4)
C340.0446 (7)0.0310 (6)0.0240 (5)−0.0169 (5)0.0017 (5)−0.0137 (5)
C350.0323 (5)0.0302 (6)0.0218 (5)−0.0150 (4)0.0031 (4)−0.0121 (4)

Geometric parameters (Å, °)

O1—C171.4109 (11)C15—C281.5175 (13)
O1—H1O10.863 (18)C15—C251.5542 (13)
O2—C241.2171 (12)C15—C161.5683 (12)
O3—C281.2214 (11)C16—C241.5401 (13)
N1—C161.4636 (12)C16—C171.5717 (13)
N1—C71.4883 (12)C17—C181.5129 (13)
N1—H1N10.904 (15)C18—C231.3926 (14)
N2—C251.4731 (12)C18—C191.3955 (14)
N2—C261.4754 (13)C19—C201.3887 (16)
N2—C171.4763 (12)C19—H19A0.9300
C1—C21.3933 (16)C20—C211.3998 (19)
C1—C61.3969 (14)C20—H20A0.9300
C1—H1A0.9300C21—C221.3829 (17)
C2—C31.3857 (19)C21—H21A0.9300
C2—H2A0.9300C22—C231.3958 (14)
C3—C41.3892 (19)C22—H22A0.9300
C3—H3A0.9300C23—C241.4738 (14)
C4—C51.3874 (15)C25—H25A0.9700
C4—H4A0.9300C25—H25B0.9700
C5—C61.3968 (14)C26—C271.5242 (13)
C5—H5A0.9300C26—H26A0.9700
C6—C71.5064 (13)C26—H26B0.9700
C7—C81.5482 (13)C27—C291.3483 (14)
C7—H7A0.9800C27—C281.5012 (13)
C8—C91.5140 (12)C29—C301.4666 (14)
C8—C151.5295 (13)C29—H29A0.9300
C8—H8A0.9800C30—C351.3970 (15)
C9—C101.3949 (13)C30—C311.4025 (15)
C9—C141.4002 (13)C31—C321.3953 (15)
C10—C111.3952 (13)C31—H31A0.9300
C10—H10A0.9300C32—C331.3859 (18)
C11—C121.3880 (16)C32—H32A0.9300
C11—H11A0.9300C33—C341.3847 (18)
C12—C131.3867 (17)C33—H33A0.9300
C12—H12A0.9300C34—C351.3886 (16)
C13—C141.3911 (14)C34—H34A0.9300
C13—H13A0.9300C35—H35A0.9300
C14—H14A0.9300
C17—O1—H1O1103.4 (11)O1—C17—N2107.75 (7)
C16—N1—C7108.20 (7)O1—C17—C18112.40 (8)
C16—N1—H1N1110.8 (9)N2—C17—C18115.09 (8)
C7—N1—H1N1110.8 (9)O1—C17—C16109.81 (7)
C25—N2—C26107.71 (7)N2—C17—C16106.84 (7)
C25—N2—C17102.98 (7)C18—C17—C16104.70 (7)
C26—N2—C17115.82 (7)C23—C18—C19120.49 (9)
C2—C1—C6120.09 (10)C23—C18—C17111.55 (8)
C2—C1—H1A120.0C19—C18—C17127.87 (9)
C6—C1—H1A120.0C20—C19—C18118.18 (11)
C3—C2—C1120.29 (11)C20—C19—H19A120.9
C3—C2—H2A119.9C18—C19—H19A120.9
C1—C2—H2A119.9C19—C20—C21120.99 (11)
C2—C3—C4119.84 (10)C19—C20—H20A119.5
C2—C3—H3A120.1C21—C20—H20A119.5
C4—C3—H3A120.1C22—C21—C20121.03 (10)
C5—C4—C3120.16 (11)C22—C21—H21A119.5
C5—C4—H4A119.9C20—C21—H21A119.5
C3—C4—H4A119.9C21—C22—C23117.91 (11)
C4—C5—C6120.41 (10)C21—C22—H22A121.0
C4—C5—H5A119.8C23—C22—H22A121.0
C6—C5—H5A119.8C18—C23—C22121.38 (10)
C5—C6—C1119.14 (9)C18—C23—C24110.55 (8)
C5—C6—C7121.33 (9)C22—C23—C24127.71 (10)
C1—C6—C7119.45 (9)O2—C24—C23127.65 (9)
N1—C7—C6113.67 (7)O2—C24—C16124.17 (9)
N1—C7—C8104.17 (7)C23—C24—C16107.95 (8)
C6—C7—C8114.21 (7)N2—C25—C15103.48 (7)
N1—C7—H7A108.2N2—C25—H25A111.1
C6—C7—H7A108.2C15—C25—H25A111.1
C8—C7—H7A108.2N2—C25—H25B111.1
C9—C8—C15117.66 (7)C15—C25—H25B111.1
C9—C8—C7115.68 (7)H25A—C25—H25B109.0
C15—C8—C7101.04 (7)N2—C26—C27114.98 (8)
C9—C8—H8A107.3N2—C26—H26A108.5
C15—C8—H8A107.3C27—C26—H26A108.5
C7—C8—H8A107.3N2—C26—H26B108.5
C10—C9—C14118.20 (9)C27—C26—H26B108.5
C10—C9—C8122.50 (8)H26A—C26—H26B107.5
C14—C9—C8119.25 (8)C29—C27—C28116.36 (9)
C9—C10—C11120.58 (9)C29—C27—C26124.55 (9)
C9—C10—H10A119.7C28—C27—C26119.00 (8)
C11—C10—H10A119.7O3—C28—C27122.90 (9)
C12—C11—C10120.53 (10)O3—C28—C15122.12 (9)
C12—C11—H11A119.7C27—C28—C15114.94 (8)
C10—C11—H11A119.7C27—C29—C30128.62 (9)
C13—C12—C11119.47 (9)C27—C29—H29A115.7
C13—C12—H12A120.3C30—C29—H29A115.7
C11—C12—H12A120.3C35—C30—C31118.20 (10)
C12—C13—C14120.07 (10)C35—C30—C29117.01 (9)
C12—C13—H13A120.0C31—C30—C29124.68 (10)
C14—C13—H13A120.0C32—C31—C30120.50 (10)
C13—C14—C9121.14 (10)C32—C31—H31A119.8
C13—C14—H14A119.4C30—C31—H31A119.8
C9—C14—H14A119.4C33—C32—C31120.49 (11)
C28—C15—C8117.35 (7)C33—C32—H32A119.8
C28—C15—C25107.65 (7)C31—C32—H32A119.8
C8—C15—C25116.98 (7)C34—C33—C32119.32 (10)
C28—C15—C16108.88 (7)C34—C33—H33A120.3
C8—C15—C16103.12 (7)C32—C33—H33A120.3
C25—C15—C16101.25 (7)C33—C34—C35120.63 (11)
N1—C16—C24110.58 (7)C33—C34—H34A119.7
N1—C16—C15106.43 (7)C35—C34—H34A119.7
C24—C16—C15117.72 (7)C34—C35—C30120.84 (11)
N1—C16—C17113.59 (7)C34—C35—H35A119.6
C24—C16—C17104.93 (7)C30—C35—H35A119.6
C15—C16—C17103.62 (7)
C6—C1—C2—C3−0.08 (16)C24—C16—C17—C18−5.11 (9)
C1—C2—C3—C41.96 (17)C15—C16—C17—C18−129.17 (7)
C2—C3—C4—C5−1.43 (16)O1—C17—C18—C23124.98 (9)
C3—C4—C5—C6−0.98 (16)N2—C17—C18—C23−111.16 (9)
C4—C5—C6—C12.83 (14)C16—C17—C18—C235.82 (10)
C4—C5—C6—C7−173.65 (9)O1—C17—C18—C19−51.54 (13)
C2—C1—C6—C5−2.30 (15)N2—C17—C18—C1972.33 (13)
C2—C1—C6—C7174.25 (9)C16—C17—C18—C19−170.69 (10)
C16—N1—C7—C6152.42 (8)C23—C18—C19—C20−0.35 (15)
C16—N1—C7—C827.49 (9)C17—C18—C19—C20175.89 (10)
C5—C6—C7—N1−68.57 (11)C18—C19—C20—C211.03 (17)
C1—C6—C7—N1114.96 (10)C19—C20—C21—C22−0.48 (19)
C5—C6—C7—C850.78 (11)C20—C21—C22—C23−0.74 (18)
C1—C6—C7—C8−125.69 (9)C19—C18—C23—C22−0.89 (15)
N1—C7—C8—C9−168.61 (7)C17—C18—C23—C22−177.70 (9)
C6—C7—C8—C966.82 (10)C19—C18—C23—C24172.68 (9)
N1—C7—C8—C15−40.39 (8)C17—C18—C23—C24−4.13 (11)
C6—C7—C8—C15−164.96 (7)C21—C22—C23—C181.42 (17)
C15—C8—C9—C10−86.52 (11)C21—C22—C23—C24−170.96 (11)
C7—C8—C9—C1032.95 (12)C18—C23—C24—O2−174.10 (10)
C15—C8—C9—C1496.07 (11)C22—C23—C24—O2−1.04 (18)
C7—C8—C9—C14−144.46 (9)C18—C23—C24—C160.55 (11)
C14—C9—C10—C11−0.64 (15)C22—C23—C24—C16173.61 (10)
C8—C9—C10—C11−178.07 (9)N1—C16—C24—O255.00 (12)
C9—C10—C11—C120.76 (16)C15—C16—C24—O2−67.59 (13)
C10—C11—C12—C13−0.23 (17)C17—C16—C24—O2177.86 (9)
C11—C12—C13—C14−0.40 (17)N1—C16—C24—C23−119.88 (8)
C12—C13—C14—C90.51 (17)C15—C16—C24—C23117.52 (9)
C10—C9—C14—C130.01 (15)C17—C16—C24—C232.98 (10)
C8—C9—C14—C13177.53 (9)C26—N2—C25—C1575.74 (9)
C9—C8—C15—C28−75.97 (10)C17—N2—C25—C15−47.14 (9)
C7—C8—C15—C28157.10 (7)C28—C15—C25—N2−72.26 (9)
C9—C8—C15—C2554.29 (11)C8—C15—C25—N2153.07 (8)
C7—C8—C15—C25−72.63 (9)C16—C15—C25—N241.91 (9)
C9—C8—C15—C16164.38 (7)C25—N2—C26—C27−48.63 (10)
C7—C8—C15—C1637.46 (8)C17—N2—C26—C2765.98 (10)
C7—N1—C16—C24−132.42 (8)N2—C26—C27—C29−158.49 (9)
C7—N1—C16—C15−3.45 (9)N2—C26—C27—C2818.05 (12)
C7—N1—C16—C17109.92 (8)C29—C27—C28—O3−16.55 (14)
C28—C15—C16—N1−147.40 (7)C26—C27—C28—O3166.63 (9)
C8—C15—C16—N1−22.08 (9)C29—C27—C28—C15161.28 (8)
C25—C15—C16—N199.34 (8)C26—C27—C28—C15−15.54 (12)
C28—C15—C16—C24−22.72 (11)C8—C15—C28—O3−6.06 (13)
C8—C15—C16—C24102.61 (9)C25—C15—C28—O3−140.53 (9)
C25—C15—C16—C24−135.97 (8)C16—C15—C28—O3110.49 (10)
C28—C15—C16—C1792.55 (8)C8—C15—C28—C27176.10 (7)
C8—C15—C16—C17−142.13 (7)C25—C15—C28—C2741.63 (10)
C25—C15—C16—C17−20.70 (8)C16—C15—C28—C27−67.36 (9)
C25—N2—C17—O1−84.81 (8)C28—C27—C29—C30178.98 (9)
C26—N2—C17—O1157.91 (7)C26—C27—C29—C30−4.39 (16)
C25—N2—C17—C18148.90 (8)C27—C29—C30—C35151.84 (11)
C26—N2—C17—C1831.62 (11)C27—C29—C30—C31−32.02 (17)
C25—N2—C17—C1633.14 (9)C35—C30—C31—C320.05 (15)
C26—N2—C17—C16−84.14 (9)C29—C30—C31—C32−176.05 (9)
N1—C16—C17—O1−5.11 (10)C30—C31—C32—C33−0.44 (16)
C24—C16—C17—O1−126.00 (8)C31—C32—C33—C34−0.13 (17)
C15—C16—C17—O1109.94 (8)C32—C33—C34—C351.09 (19)
N1—C16—C17—N2−121.70 (8)C33—C34—C35—C30−1.5 (2)
C24—C16—C17—N2117.40 (8)C31—C30—C35—C340.91 (17)
C15—C16—C17—N2−6.65 (9)C29—C30—C35—C34177.31 (11)
N1—C16—C17—C18115.78 (8)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C30–C35 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.862 (18)1.999 (18)2.6383 (12)130.2 (15)
C7—H7A···O1i0.982.493.4701 (13)177
C10—H10A···O1i0.932.443.3605 (13)173
C35—H35A···O3ii0.932.443.3424 (16)163
C13—H13A···Cg1iii0.932.893.7470 (12)155
C20—H20A···Cg2iv0.932.843.4275 (15)122
C33—H33A···Cg2v0.932.963.7723 (15)147

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2477).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod.49, 265–280. [PubMed]
  • Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1444–o1445. [PMC free article] [PubMed]
  • Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371. [PMC free article] [PubMed]
  • Monlineux, R. J. & Pelletier, S. (1987). Alkaloids Chemical and Biological Perspectives New York: Wiley.
  • Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tsuge, O. & Kanemasa, S. (1989). Adv. Heterocycl. Chem.45, 231–349.
  • Waldmann, H. (1995). Synlett, pp. 133–141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography