PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m934.
Published online 2010 July 14. doi:  10.1107/S1600536810027005
PMCID: PMC3007253

μ-Adipato-bis­[chlorido(2,2′:6′,2′′-terpyridine)­copper(II)] tetra­hydrate

Abstract

In the title compound, [Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2O, the dinuclear copper complex is located on a crystallographic inversion centre. Each Cu atom is in a distorted square-pyramidal coordination environment, with one O atom of an adipate dianion and three N atoms from the 2,2′:6′,2′′-terpyridine ligand occupying the basal plane, and one chlorine in the apical site. In addition, there is weak Cu—O inter­action opposite of the chlorine with a distance of 2.768 (1) Å. The adipate ligand adopts a gauche–anti–gauche conformation. The inter­stitial water mol­ecules form hydrogen-bonded tertramers that are connected to the complexes via O—H(...)O and O—H(...)Cl hydrogen bonds, thus leading to the formation of tightly hydrogen-bonded layers extending perpendicular to the b-axis direction.

Related literature

For general background to the use of saturated aliphatic dicarboxyl­ate ligands as flexible spacer ligands, see: Forster & Cheetham (2002 [triangle]); Vaidhyanathan et al. (2002 [triangle]); Zheng, Lin et al. (2008 [triangle]). For related structures, see: Zheng, Cheng et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m934-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2O
  • M r = 880.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m934-efi1.jpg
  • a = 8.2334 (16) Å
  • b = 9.5678 (19) Å
  • c = 11.548 (2) Å
  • α = 83.42 (3)°
  • β = 81.69 (3)°
  • γ = 84.38 (3)°
  • V = 891.2 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 298 K
  • 0.25 × 0.22 × 0.07 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.680, T max = 0.892
  • 8834 measured reflections
  • 4046 independent reflections
  • 3751 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.080
  • S = 1.25
  • 4046 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027005/zl2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027005/zl2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Fund of Ningbo University and a Ningbo Municipal Natural Science Foundation grant (No. 2010A610160).

supplementary crystallographic information

Comment

Different from the more rigid dicarboxylate spacer ligands, saturated aliphatic dicarboxylate ligands are conformationally more flexible with a larger coordination versatility and as such they are viewed as important flexible spacer ligands (Forster & Cheetham, 2002; Vaidhyanathan et al., 2002; Zheng, Lin et al., 2008). Among these, the adipate dianion has often been used as a bridging ligand to construct dinuclear complexes (Zheng, Cheng et al., 2008). In our recent research, we have been interested in the polydentate N-donor 2,2':6',2''-terpyridine which we have used together with bridging dicarboxylate ligands to construct polynuclear complexes. We report herein the synthesis and crystal structure of a new complex, [Cu2(C15H11N3)2(C6H8O4)Cl2].4H2O.

In the centrosymmetric dinuclear copper complex, two [Cu2(C15H11N3)2(C6H8O4)Cl2] moieties are bridged by an adipate ligand with a Cu···Cu separation in the dimer of 9.715 (2) Å (Fig. 1). The adipate ligand adopts a gauche-anti-gauche conformation. Each Cu atom is in a distorted square pyramidal coordination environment, with one O atom of an adipate dianion and three N atoms from the 2,2':6',2''-terpyridine ligand occupying the basal plane, and one chlorine in the apical site. In addition, there is a weak Cu-O interaction opposite of the chlorine with a distance of 2.768 (1) Å.

The interstitial water molecules are interacting with the metal complexes via hydrogen bonding interactions (Table 1). There are three kinds of hydrogen bonds: From one of the lattice water molecule to the coordinated oxygen atom of the carboxylate group, from the other water molecule towards a chlorine atom of one of the ligands, and between the water molecules themselves, which are arranged as tetramers in planar squares. In this way each of the water tetramers ties together four different complexes via H bonds to each two chlorines and two carboxylate oxygen atoms. The complexes in turn are hydrogen bonded to four of the water tetramers, thus leading to the formation of hydrogen bonded layers that extend perpendicular to the b-direction of the unit cell. (Fig.2).

Experimental

Dropwise addition of 1 M aqueous Na2CO3 (3.0 ml) to a stirred aqueous solution of CuCl2.6H2O (0.1215 g, 0.50 mmol) in H2O (5.0 ml) produced a blue CuCO3 precipitate, which was centrifuged and washed with water until no Cl- was detected in the supernatant. The resulting solid was added to a solution of adipic acid (0.0731, 0.50 mmol) and 2,2':6',2''-terpyridine (0.1166 g, 0.50 mmol) in 20 ml mixed solvent of H2O and CH3OH (v:v = 1:1). The mixture was stirred for half an hour and filtered, and the dark green filtrate (pH = 5.01) was left standing at room temperature. Green plate-like crystals were obtained several days later (Yield: ca. 23% based on Cu).

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and refined using a riding moldel with C–H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C). H atoms of water were found in difference Fourier syntheses and fixed as initially found.

Figures

Fig. 1.
ORTEP view of complex molecule of the title compound. Displacement ellipsoids are drawn at the 45% probability level (i = -x + 1, -y + 1, -z + 1). H atoms and lattice water molecules are omitted for clarity.
Fig. 2.
The hydrogen bonded layer perpendicular to the b-direction in the title compound. H atoms were omitted for clarity and dashed lines symbolize hydrogen bonds.

Crystal data

[Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2OZ = 1
Mr = 880.70F(000) = 452
Triclinic, P1Dx = 1.641 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2334 (16) ÅCell parameters from 7883 reflections
b = 9.5678 (19) Åθ = 3.0–27.4°
c = 11.548 (2) ŵ = 1.41 mm1
α = 83.42 (3)°T = 298 K
β = 81.69 (3)°Plate, green
γ = 84.38 (3)°0.25 × 0.22 × 0.07 mm
V = 891.2 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4046 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −12→12
Tmin = 0.680, Tmax = 0.892l = −14→14
8834 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.25w = 1/[σ2(Fo2) + (0.0414P)2 + 0.4176P] where P = (Fo2 + 2Fc2)/3
4046 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.13815 (3)0.79530 (2)0.258347 (18)0.00798 (8)
Cl0.00080 (5)0.61527 (4)0.17386 (4)0.01293 (10)
O10.31683 (16)0.65682 (13)0.29993 (11)0.0110 (3)
O20.41422 (18)0.84454 (14)0.35396 (12)0.0158 (3)
O30.40877 (18)0.42538 (14)0.16550 (12)0.0173 (3)
H3C0.50940.44580.14310.021*
H3D0.37840.47600.21320.021*
O4−0.30631 (19)0.54262 (18)0.05804 (13)0.0244 (3)
H4C−0.20000.54780.07490.029*
H4D−0.29940.5637−0.01830.029*
N1−0.00477 (19)0.78588 (16)0.41703 (13)0.0093 (3)
N20.01050 (18)0.97845 (15)0.24509 (13)0.0089 (3)
N30.24603 (19)0.88021 (16)0.10055 (13)0.0097 (3)
C1−0.0037 (2)0.67745 (19)0.50071 (16)0.0121 (3)
H1A0.07530.60200.49020.014*
C2−0.1158 (2)0.6730 (2)0.60277 (16)0.0139 (4)
H2A−0.11200.59620.65980.017*
C3−0.2338 (2)0.7858 (2)0.61759 (16)0.0151 (4)
H3A−0.31150.78510.68460.018*
C4−0.2350 (2)0.90009 (19)0.53138 (16)0.0131 (4)
H4A−0.31230.97710.54040.016*
C5−0.1188 (2)0.89694 (18)0.43166 (16)0.0098 (3)
C6−0.1046 (2)1.01126 (19)0.33414 (16)0.0104 (3)
C7−0.1938 (2)1.14257 (19)0.33008 (16)0.0128 (4)
H7A−0.27521.16550.39120.015*
C8−0.1577 (2)1.23842 (19)0.23184 (17)0.0138 (4)
H8A−0.21571.32690.22720.017*
C9−0.0360 (2)1.20397 (19)0.14023 (16)0.0126 (4)
H9A−0.01121.26830.07480.015*
C100.0474 (2)1.06991 (18)0.14981 (16)0.0100 (3)
C110.1807 (2)1.01092 (18)0.06390 (15)0.0093 (3)
C120.2341 (2)1.07967 (19)−0.04513 (16)0.0122 (3)
H12A0.18761.1691−0.06870.015*
C130.3592 (2)1.0118 (2)−0.11900 (16)0.0134 (4)
H13A0.39831.0557−0.19240.016*
C140.4240 (2)0.8782 (2)−0.08133 (16)0.0137 (4)
H14A0.50650.8308−0.12960.016*
C150.3649 (2)0.81548 (19)0.02906 (16)0.0117 (3)
H15A0.40920.72580.05410.014*
C160.4287 (2)0.71750 (18)0.33897 (15)0.0095 (3)
C170.5825 (2)0.62512 (19)0.36324 (16)0.0121 (3)
H17A0.64980.67740.40250.015*
H17B0.64560.60310.28900.015*
C180.5460 (2)0.48718 (19)0.43937 (15)0.0117 (4)
H18A0.48040.43380.39970.014*
H18C0.64890.43110.44870.014*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.00828 (12)0.00753 (11)0.00710 (12)0.00144 (7)−0.00039 (8)0.00098 (8)
Cl0.0137 (2)0.0122 (2)0.0137 (2)−0.00219 (15)−0.00496 (16)0.00018 (16)
O10.0104 (6)0.0105 (6)0.0121 (6)0.0011 (5)−0.0030 (5)−0.0010 (5)
O20.0188 (7)0.0106 (6)0.0179 (7)0.0001 (5)−0.0016 (5)−0.0031 (5)
O30.0191 (7)0.0159 (6)0.0161 (7)−0.0004 (5)0.0020 (5)−0.0052 (5)
O40.0184 (8)0.0409 (9)0.0157 (7)−0.0097 (7)−0.0021 (6)−0.0040 (7)
N10.0105 (7)0.0089 (7)0.0086 (7)−0.0010 (5)−0.0017 (5)−0.0008 (6)
N20.0092 (7)0.0083 (7)0.0092 (7)−0.0006 (5)−0.0026 (6)0.0001 (6)
N30.0098 (7)0.0105 (7)0.0090 (7)−0.0011 (5)−0.0020 (5)−0.0001 (6)
C10.0117 (8)0.0115 (8)0.0133 (8)−0.0008 (6)−0.0034 (7)−0.0004 (7)
C20.0171 (9)0.0145 (8)0.0108 (8)−0.0047 (7)−0.0037 (7)0.0015 (7)
C30.0174 (9)0.0176 (9)0.0100 (8)−0.0050 (7)0.0025 (7)−0.0024 (7)
C40.0139 (9)0.0123 (8)0.0129 (8)−0.0017 (7)0.0008 (7)−0.0028 (7)
C50.0109 (8)0.0086 (8)0.0106 (8)−0.0011 (6)−0.0027 (6)−0.0019 (7)
C60.0099 (8)0.0116 (8)0.0105 (8)−0.0010 (6)−0.0026 (6)−0.0031 (7)
C70.0117 (9)0.0128 (8)0.0142 (9)0.0018 (7)−0.0026 (7)−0.0045 (7)
C80.0147 (9)0.0093 (8)0.0177 (9)0.0020 (6)−0.0055 (7)−0.0016 (7)
C90.0152 (9)0.0102 (8)0.0130 (8)−0.0022 (7)−0.0048 (7)0.0017 (7)
C100.0102 (8)0.0104 (8)0.0100 (8)−0.0017 (6)−0.0035 (6)0.0003 (7)
C110.0093 (8)0.0089 (8)0.0102 (8)−0.0020 (6)−0.0038 (6)0.0011 (7)
C120.0133 (9)0.0125 (8)0.0116 (8)−0.0034 (7)−0.0035 (7)−0.0002 (7)
C130.0140 (9)0.0177 (9)0.0092 (8)−0.0068 (7)−0.0013 (7)−0.0003 (7)
C140.0117 (9)0.0182 (9)0.0114 (8)−0.0030 (7)0.0013 (7)−0.0049 (7)
C150.0121 (9)0.0109 (8)0.0117 (8)−0.0004 (6)−0.0021 (7)−0.0002 (7)
C160.0120 (8)0.0100 (8)0.0053 (7)−0.0016 (6)0.0016 (6)0.0018 (6)
C170.0100 (8)0.0144 (8)0.0116 (8)−0.0003 (6)−0.0020 (6)−0.0002 (7)
C180.0119 (8)0.0122 (8)0.0109 (8)0.0036 (6)−0.0044 (7)−0.0012 (7)

Geometric parameters (Å, °)

Cu—N21.9552 (16)C5—C61.478 (3)
Cu—O11.9562 (14)C6—C71.391 (2)
Cu—N32.0257 (17)C7—C81.391 (3)
Cu—N12.0274 (16)C7—H7A0.9300
Cu—Cl2.5067 (8)C8—C91.393 (3)
O1—C161.294 (2)C8—H8A0.9300
O2—C161.239 (2)C9—C101.395 (2)
O3—H3C0.8658C9—H9A0.9300
O3—H3D0.7734C10—C111.483 (2)
O4—H4C0.9308C11—C121.385 (3)
O4—H4D0.8764C12—C131.397 (3)
N1—C11.335 (2)C12—H12A0.9300
N1—C51.356 (2)C13—C141.383 (3)
N2—C61.337 (2)C13—H13A0.9300
N2—C101.343 (2)C14—C151.387 (3)
N3—C151.337 (2)C14—H14A0.9300
N3—C111.358 (2)C15—H15A0.9300
C1—C21.387 (3)C16—C171.513 (3)
C1—H1A0.9300C17—C181.530 (3)
C2—C31.389 (3)C17—H17A0.9700
C2—H2A0.9300C17—H17B0.9700
C3—C41.392 (3)C18—C18i1.527 (3)
C3—H3A0.9300C18—H18A0.9700
C4—C51.388 (3)C18—H18C0.9700
C4—H4A0.9300
N2—Cu—O1157.68 (6)C8—C7—H7A121.0
N2—Cu—N379.61 (7)C6—C7—H7A121.0
O1—Cu—N399.40 (6)C7—C8—C9121.01 (17)
N2—Cu—N179.49 (7)C7—C8—H8A119.5
O1—Cu—N198.23 (6)C9—C8—H8A119.5
N3—Cu—N1158.62 (6)C8—C9—C10117.87 (17)
N2—Cu—Cl110.17 (5)C8—C9—H9A121.1
O1—Cu—Cl92.15 (4)C10—C9—H9A121.1
N3—Cu—Cl94.79 (5)N2—C10—C9120.32 (17)
N1—Cu—Cl96.54 (5)N2—C10—C11112.50 (15)
C16—O1—Cu110.59 (11)C9—C10—C11127.18 (17)
H3C—O3—H3D102.7N3—C11—C12122.00 (16)
H4C—O4—H4D104.5N3—C11—C10113.92 (15)
C1—N1—C5119.25 (16)C12—C11—C10124.06 (16)
C1—N1—Cu125.82 (13)C11—C12—C13118.57 (17)
C5—N1—Cu114.70 (12)C11—C12—H12A120.7
C6—N2—C10122.21 (15)C13—C12—H12A120.7
C6—N2—Cu118.81 (12)C14—C13—C12119.01 (17)
C10—N2—Cu118.88 (12)C14—C13—H13A120.5
C15—N3—C11119.08 (16)C12—C13—H13A120.5
C15—N3—Cu125.77 (12)C13—C14—C15119.40 (17)
C11—N3—Cu114.98 (12)C13—C14—H14A120.3
N1—C1—C2122.57 (17)C15—C14—H14A120.3
N1—C1—H1A118.7N3—C15—C14121.92 (17)
C2—C1—H1A118.7N3—C15—H15A119.0
C1—C2—C3118.37 (18)C14—C15—H15A119.0
C1—C2—H2A120.8O2—C16—O1122.70 (17)
C3—C2—H2A120.8O2—C16—C17121.07 (17)
C2—C3—C4119.53 (18)O1—C16—C17116.22 (15)
C2—C3—H3A120.2C16—C17—C18113.19 (15)
C4—C3—H3A120.2C16—C17—H17A108.9
C5—C4—C3118.75 (17)C18—C17—H17A108.9
C5—C4—H4A120.6C16—C17—H17B108.9
C3—C4—H4A120.6C18—C17—H17B108.9
N1—C5—C4121.52 (17)H17A—C17—H17B107.8
N1—C5—C6113.96 (16)C18i—C18—C17112.17 (18)
C4—C5—C6124.51 (16)C18i—C18—H18A109.2
N2—C6—C7120.59 (17)C17—C18—H18A109.2
N2—C6—C5112.72 (15)C18i—C18—H18C109.2
C7—C6—C5126.68 (17)C17—C18—H18C109.2
C8—C7—C6117.98 (17)H18A—C18—H18C107.9

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3C···O4ii0.871.942.767 (2)160
O3—H3D···O10.772.082.829 (2)163
O4—H4C···Cl0.932.323.194 (2)156
O4—H4D···O3iii0.882.022.805 (2)148

Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2287).

References

  • Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed.41, 457–459. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem.41, 5226–5234. [PubMed]
  • Zheng, Y.-Q., Cheng, D.-Y., Lin, J.-L., Li, Z.-F. & Wang, X.-W. (2008). Eur. J. Inorg. Chem. pp. 4453–4461.
  • Zheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem.47, 10280–10287. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography