PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1967.
Published online 2010 July 10. doi:  10.1107/S1600536810026243
PMCID: PMC3007252

Bis(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carb­oxy­lic acid) monohydrate

Abstract

The crystal structure of the title compound, 2C10H9N3O2·H2O, synthesized from azido­benzene and ethyl acetyl­acetate, is stabilized by O—H(...)O and O—H(...)N hydrogen bonds.

Related literature

The title compound was studied as part of our search for phase transition materials, see: Li et al. (2008 [triangle]); Zhang et al. (2009 [triangle]). For the preparation, see: El Khadem et al. (1968 [triangle]). For the biological activity of triazoles, see: Olesen et al. (2003 [triangle]) Tian et al. (2005 [triangle]). For a related structure, see: Lin (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1967-scheme1.jpg

Experimental

Crystal data

  • 2C10H9N3O2·H2O
  • M r = 424.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1967-efi1.jpg
  • a = 6.7419 (13) Å
  • b = 15.842 (3) Å
  • c = 19.643 (4) Å
  • β = 99.82 (3)°
  • V = 2067.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.42 × 0.38 × 0.35 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.947, T max = 0.951
  • 20838 measured reflections
  • 4733 independent reflections
  • 3206 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.172
  • S = 0.87
  • 4733 reflections
  • 292 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026243/jh2161sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026243/jh2161Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Many triazole-related molecules have received much attention because of their biological activities (Olesen et al., 2003; Tian et al., 2005). Most non-hydrogen atoms of the triazole Ring were coplanar, with the mean deviation from plane of 0.363 (142)° and C11—C16—N4—N5 torsion angle of 57.202 (259)°. The weak π-π packing interactions of the triazole and phenyl ring planes with CgCg distances from 4.2017 Å to 5.0920 Å (Cg is the centroid of the triazole or the phenyl ring planes) stabilized the crystal structure. Because of changes in the external environment, the title compound crystallize in different space group (Lin et al., 2008) and there is a water molecular in the asymmetric unit which transform the method of connection of hydrogen bonds.

As a continuation of our study of phase transition materials, including organicligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009),the dielectric constant of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid hydrate compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.2 to 8.2), suggesting that there may be no distinct phase transition occurred within the measured temperature range.

Experimental

The title compound was prepared from azidobenzene according to the reported method (El Khadem et al., 1968). The colourless prisms (average size: 0.8×0.8×2.0 mm) were obtained by slow evaporation from ethanol solution at room temperature for 3 days.

Refinement

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H=0.93 Å, with Uiso(H)=1.2Ueq(C). Cmethyl—H=0.96 Å, with Uiso(H)=1.5Ueq(C). The hydroxyl hydrogen was refined freely.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the a axis.

Crystal data

2C10H9N3O2·H2OF(000) = 888
Mr = 424.42Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8429 reflections
a = 6.7419 (13) Åθ = 3.1–27.7°
b = 15.842 (3) ŵ = 0.10 mm1
c = 19.643 (4) ÅT = 293 K
β = 99.82 (3)°Prism, colorless
V = 2067.2 (7) Å30.42 × 0.38 × 0.35 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer4733 independent reflections
Radiation source: fine-focus sealed tube3206 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −20→20
Tmin = 0.947, Tmax = 0.951l = −25→25
20838 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.87w = 1/[σ2(Fo2) + (0.1083P)2 + 0.6293P] where P = (Fo2 + 2Fc2)/3
4733 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O4−0.2245 (3)0.25435 (10)1.04831 (9)0.0616 (5)
H4−0.30310.24781.07540.092*
N10.3101 (2)0.21148 (10)0.20357 (8)0.0427 (4)
O10.2105 (2)0.44007 (10)0.09705 (9)0.0604 (5)
H10.21330.48020.07090.091*
O20.4704 (3)0.39675 (10)0.05055 (9)0.0658 (5)
N30.4944 (3)0.25050 (10)0.13134 (10)0.0505 (5)
O3−0.1197 (3)0.12701 (11)1.08533 (9)0.0725 (5)
N60.0253 (3)0.25962 (11)0.95482 (10)0.0515 (5)
N40.2420 (2)0.17006 (10)0.93228 (9)0.0426 (4)
C170.1698 (3)0.13594 (13)0.98605 (10)0.0416 (5)
N50.1530 (3)0.24561 (11)0.91340 (10)0.0542 (5)
C160.3809 (3)0.13618 (13)0.89167 (10)0.0427 (5)
C70.2327 (3)0.28716 (12)0.18016 (10)0.0387 (4)
C90.3516 (3)0.38637 (12)0.08889 (11)0.0438 (5)
C80.3532 (3)0.31110 (12)0.13320 (10)0.0407 (4)
C60.2526 (3)0.15587 (12)0.25486 (10)0.0406 (4)
C180.0303 (3)0.19342 (12)0.99957 (10)0.0397 (4)
C19−0.1097 (3)0.18755 (13)1.04937 (10)0.0435 (5)
N20.4702 (3)0.18997 (11)0.17417 (10)0.0544 (5)
C40.0066 (4)0.07727 (15)0.30104 (13)0.0555 (6)
H4A−0.12620.06020.29920.067*
C30.1503 (4)0.04942 (14)0.35351 (12)0.0539 (6)
H30.11570.01350.38710.065*
C10.3999 (3)0.12818 (13)0.30735 (11)0.0468 (5)
H1A0.53290.14520.30960.056*
C110.5459 (3)0.18340 (15)0.88273 (12)0.0535 (5)
H110.57210.23500.90510.064*
C50.0549 (3)0.13048 (14)0.25048 (11)0.0495 (5)
H5−0.04350.14870.21440.059*
C100.0630 (3)0.32936 (14)0.20576 (12)0.0515 (5)
H10A−0.06150.31400.17700.077*
H10B0.08020.38950.20440.077*
H10C0.06060.31190.25240.077*
C150.3431 (4)0.05856 (14)0.86021 (12)0.0542 (6)
H150.23220.02680.86710.065*
C20.3460 (4)0.07454 (14)0.35661 (12)0.0528 (5)
H20.44410.05520.39240.063*
C130.6347 (4)0.0763 (2)0.80763 (13)0.0709 (8)
H130.71940.05650.77840.085*
C200.2496 (4)0.05710 (17)1.02157 (13)0.0694 (8)
H20A0.21710.01000.99090.104*
H20B0.19010.04901.06210.104*
H20C0.39310.06141.03460.104*
C120.6716 (4)0.1527 (2)0.83991 (14)0.0705 (7)
H120.78270.18430.83290.085*
C140.4724 (4)0.02880 (17)0.81842 (12)0.0644 (7)
H140.4496−0.02370.79740.077*
O50.2055 (3)0.58080 (13)0.02879 (12)0.0749 (6)
H5A0.290 (5)0.591 (2)0.0025 (18)0.098 (11)*
H5B0.131 (6)0.622 (3)0.0310 (19)0.111 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O40.0721 (11)0.0477 (9)0.0777 (11)0.0177 (8)0.0487 (9)0.0112 (8)
N10.0477 (9)0.0344 (9)0.0519 (10)0.0046 (7)0.0252 (8)0.0031 (7)
O10.0609 (10)0.0480 (9)0.0805 (12)0.0167 (8)0.0356 (9)0.0221 (8)
O20.0814 (12)0.0502 (9)0.0792 (11)0.0107 (8)0.0519 (10)0.0132 (8)
N30.0571 (11)0.0373 (9)0.0654 (12)0.0075 (8)0.0342 (9)0.0056 (8)
O30.0995 (14)0.0625 (11)0.0671 (11)0.0289 (10)0.0472 (10)0.0255 (9)
N60.0569 (11)0.0385 (9)0.0674 (12)0.0102 (8)0.0337 (9)0.0083 (8)
N40.0434 (9)0.0380 (9)0.0496 (10)0.0080 (7)0.0168 (7)0.0025 (7)
C170.0434 (10)0.0429 (11)0.0397 (10)0.0091 (8)0.0107 (8)0.0019 (8)
N50.0615 (11)0.0382 (10)0.0722 (13)0.0129 (8)0.0377 (10)0.0119 (8)
C160.0426 (10)0.0445 (11)0.0434 (10)0.0126 (9)0.0143 (8)0.0035 (8)
C70.0409 (10)0.0353 (10)0.0428 (10)0.0008 (8)0.0154 (8)−0.0040 (8)
C90.0457 (11)0.0377 (10)0.0518 (12)0.0008 (9)0.0193 (9)−0.0020 (8)
C80.0440 (10)0.0341 (10)0.0482 (11)0.0017 (8)0.0194 (9)−0.0038 (8)
C60.0492 (11)0.0319 (9)0.0452 (11)0.0011 (8)0.0209 (9)−0.0006 (8)
C180.0414 (10)0.0377 (10)0.0415 (10)0.0045 (8)0.0115 (8)0.0006 (8)
C190.0514 (11)0.0403 (11)0.0414 (11)0.0072 (9)0.0155 (9)0.0002 (8)
N20.0628 (12)0.0400 (10)0.0702 (12)0.0116 (8)0.0394 (10)0.0097 (8)
C40.0495 (12)0.0546 (13)0.0659 (15)−0.0092 (10)0.0195 (11)0.0070 (11)
C30.0665 (14)0.0445 (12)0.0555 (13)−0.0007 (10)0.0238 (11)0.0096 (10)
C10.0434 (11)0.0413 (11)0.0586 (13)0.0047 (9)0.0169 (9)−0.0021 (9)
C110.0489 (12)0.0584 (13)0.0560 (13)0.0021 (10)0.0169 (10)−0.0043 (10)
C50.0487 (12)0.0498 (12)0.0508 (12)−0.0049 (9)0.0106 (9)0.0055 (10)
C100.0534 (12)0.0492 (12)0.0579 (13)0.0065 (10)0.0271 (10)−0.0006 (10)
C150.0613 (13)0.0449 (12)0.0584 (14)0.0085 (10)0.0157 (11)−0.0012 (10)
C20.0604 (13)0.0459 (12)0.0528 (13)0.0092 (10)0.0120 (10)0.0075 (10)
C130.0699 (17)0.090 (2)0.0589 (15)0.0279 (15)0.0283 (13)−0.0044 (14)
C200.0859 (18)0.0688 (16)0.0585 (15)0.0407 (14)0.0265 (13)0.0226 (12)
C120.0535 (14)0.091 (2)0.0744 (17)0.0013 (13)0.0306 (12)−0.0034 (15)
C140.0805 (17)0.0569 (14)0.0582 (14)0.0247 (13)0.0186 (12)−0.0081 (11)
O50.0685 (12)0.0576 (11)0.1075 (16)0.0208 (10)0.0409 (11)0.0379 (10)

Geometric parameters (Å, °)

O4—C191.309 (2)C4—C31.362 (3)
O4—H40.8200C4—C51.383 (3)
N1—N21.352 (2)C4—H4A0.9300
N1—C71.356 (3)C3—C21.370 (3)
N1—C61.440 (2)C3—H30.9300
O1—C91.306 (2)C1—C21.382 (3)
O1—H10.8200C1—H1A0.9300
O2—C91.201 (2)C11—C121.381 (3)
N3—N21.304 (2)C11—H110.9300
N3—C81.357 (2)C5—H50.9300
O3—C191.200 (2)C10—H10A0.9600
N6—N51.300 (2)C10—H10B0.9600
N6—C181.365 (3)C10—H10C0.9600
N4—C171.349 (2)C15—C141.378 (3)
N4—N51.362 (2)C15—H150.9300
N4—C161.434 (2)C2—H20.9300
C17—C181.367 (3)C13—C121.370 (4)
C17—C201.486 (3)C13—C141.373 (4)
C16—C111.376 (3)C13—H130.9300
C16—C151.380 (3)C20—H20A0.9600
C7—C81.382 (3)C20—H20B0.9600
C7—C101.485 (3)C20—H20C0.9600
C9—C81.475 (3)C12—H120.9300
C6—C11.376 (3)C14—H140.9300
C6—C51.381 (3)O5—H5A0.85 (4)
C18—C191.474 (3)O5—H5B0.83 (4)
C19—O4—H4109.5C4—C3—H3120.2
N2—N1—C7111.55 (15)C2—C3—H3120.2
N2—N1—C6118.32 (15)C6—C1—C2118.6 (2)
C7—N1—C6130.07 (16)C6—C1—H1A120.7
C9—O1—H1109.5C2—C1—H1A120.7
N2—N3—C8109.73 (16)C16—C11—C12118.7 (2)
N5—N6—C18109.01 (16)C16—C11—H11120.7
C17—N4—N5111.38 (15)C12—C11—H11120.7
C17—N4—C16129.99 (17)C6—C5—C4118.4 (2)
N5—N4—C16118.46 (16)C6—C5—H5120.8
N4—C17—C18103.72 (17)C4—C5—H5120.8
N4—C17—C20123.68 (18)C7—C10—H10A109.5
C18—C17—C20132.41 (19)C7—C10—H10B109.5
N6—N5—N4106.70 (16)H10A—C10—H10B109.5
C11—C16—C15121.2 (2)C7—C10—H10C109.5
C11—C16—N4119.10 (19)H10A—C10—H10C109.5
C15—C16—N4119.62 (19)H10B—C10—H10C109.5
N1—C7—C8103.45 (16)C14—C15—C16119.0 (2)
N1—C7—C10123.88 (17)C14—C15—H15120.5
C8—C7—C10132.61 (18)C16—C15—H15120.5
O2—C9—O1124.44 (19)C3—C2—C1120.9 (2)
O2—C9—C8122.83 (18)C3—C2—H2119.6
O1—C9—C8112.72 (17)C1—C2—H2119.6
N3—C8—C7108.59 (17)C12—C13—C14120.0 (2)
N3—C8—C9119.39 (17)C12—C13—H13120.0
C7—C8—C9132.02 (17)C14—C13—H13120.0
C1—C6—C5121.31 (19)C17—C20—H20A109.5
C1—C6—N1118.25 (18)C17—C20—H20B109.5
C5—C6—N1120.44 (19)H20A—C20—H20B109.5
N6—C18—C17109.19 (17)C17—C20—H20C109.5
N6—C18—C19121.87 (17)H20A—C20—H20C109.5
C17—C18—C19128.80 (18)H20B—C20—H20C109.5
O3—C19—O4124.27 (19)C13—C12—C11120.7 (3)
O3—C19—C18123.24 (18)C13—C12—H12119.6
O4—C19—C18112.46 (17)C11—C12—H12119.6
N3—N2—N1106.67 (15)C13—C14—C15120.4 (2)
C3—C4—C5121.1 (2)C13—C14—H14119.8
C3—C4—H4A119.4C15—C14—H14119.8
C5—C4—H4A119.4H5A—O5—H5B112 (3)
C4—C3—C2119.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.821.892.704 (2)170
O1—H1···O50.821.792.599 (2)168
O5—H5A···O2ii0.85 (4)2.07 (4)2.914 (3)171 (3)
O5—H5B···N6iii0.83 (4)2.20 (4)3.015 (3)171 (4)

Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2161).

References

  • El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843. [PMC free article] [PubMed]
  • Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem.46, 3333–3341. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem.99, 1646–1652. [PubMed]
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography