PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2032–o2033.
Published online 2010 July 17. doi:  10.1107/S1600536810027558
PMCID: PMC3007251

A new monoclinic polymorph of 3-diethyl­amino-4-(4-meth­oxy­phen­yl)-1,1-dioxo-4H-1λ6,2-thia­zete-4-carbonitrile

Abstract

A new monoclinic form of the title compound, C14H17N3O3S, has been found upon slow crystallization from water. Another monoclinic form of the compound was obtained previously from a mixture of dichloro­methane and diethyl ether [Clerici et al. (2002 [triangle]). Tetra­hedron, 58, 5173–5178]. Both phases crystallize in space group P21/n with one mol­ecule in the asymmetric unit. The formally single exocyclic C—N bond that connects the –NEt2 unit with the thia­zete ring is considerably shorter than the adjacent, formally double, endocyclic C=N bond. This is likely to be due to the extended conjugated system between the electron-donor diethyl­ammine fragment and the electron-withdrawing sulfonyl group. In the newly discovered polymorph, the meth­oxy group is rotated by almost 180° around the phen­yl–OCH3 bond, resulting in a different mol­ecular conformation.

Related literature

For the synthesis of the title compound and the crystal structure of the other polymorph, see: Clerici et al. (2002 [triangle]). For a related structure, see: Clerici et al. (1996 [triangle]). For the biological activity of β-sultam derivatives, see: Barwick et al. (2008 [triangle]) and references therein.

An external file that holds a picture, illustration, etc.
Object name is e-66-o2032-scheme1.jpg

Experimental

Crystal data

  • C14H17N3O3S
  • M r = 307.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2032-efi1.jpg
  • a = 8.3853 (17) Å
  • b = 17.554 (4) Å
  • c = 10.458 (2) Å
  • β = 95.07 (3)°
  • V = 1533.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 293 K
  • 0.18 × 0.16 × 0.16 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.855, T max = 0.947
  • 16661 measured reflections
  • 2814 independent reflections
  • 1949 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.01
  • 2814 reflections
  • 258 parameters
  • All H-atom parameters refined
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2010 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027558/nk2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027558/nk2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Thanks are due to Professor Riccardo Destro (Università degli Studi di Milano) for thoughtful discussions and to Professor Francesca Clerici (Università degli Studi di Milano) for providing the crystal. Dr Laura Loconte (Università degli Studi di Milano) and Mr Pietro Colombo (Consiglio Nazionale delle Ricerche) are also to be thanked for technical assistance. Financial support by the Italian MIUR (fondi PUR 2008) is also gratefully appreciated.

supplementary crystallographic information

Comment

The title compound, (I), a thiazete 1,1 dioxo derivative containing a four-membered heterocycle, exhibits a marked similarity with the β-sultamic functionality, which is the key component of promising antibiotic drugs (Barwick et al., 2008). A new monoclinic polymorph of (I) (hereinafter, phase B: Fig. 1, Table 1) was found upon slow recrystallization from water of a little amount of the phase A, originally obtained from a CH2Cl2:Et2O mixture (Clerici et al., 2002). Both polymorphs share the same space group, P21/n, with one molecule in the asymmetric unit. On average, bond lengths and angles are very similar between the two forms, while the molecular conformations are different. The most important dissimilarity resides in the dihedral angles involving the phenyl-OCH3 single bond, which is rotated by ~180° in the form B with respect to form A (Fig. 2). In both crystal forms the formally single exocyclic C9–N1 bond connecting the –NEt2 moiety to the thiazete ring is considerably shorter (phase B: 1.307 (3) Å; phase A: 1.318 (3) Å) than the adjacent, formally double, endocyclic C9=N2 bond (phase B: 1.331 (3) Å; phase A: 1.327 (3) Å). A possible explanation resides in the existence of an extended π conjugated system between the electron-donor diethylammine fragment and the electron-withdrawing sulfonyl group. This conjecture is supported by the values of the C–N1–C angles, which in both phases range from ~118° to ~122° and are compatible with a formally sp2 tertiary nitrogen atom. Very similar bond distances within the thiazete group have been reported by Clerici et al. (1996) for a chemically related derivative of (I). On geometrical grounds, no relevant intermolecular hydrogen bonds have been found in both phases.

Experimental

The compound (I) was synthesized using the procedure reported by Clerici et al. (2002). Part of the material obtained from dichloromethane and diethyl ether (phase A) was dissolved in distilled water and crystallized by slow solvent evaporation at room temperature. After roughly 7 days, very small colorless crystals with the same habit (prism) as the most common phase A appeared. Only the X-ray analysis revealed that in fact a new polymorph (phase B) was obtained.

Refinement

All hydrogen atoms have been located by difference Fourier. Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); absorption correction: SADABS (Bruker, 2007); program used to solve structure: SHELXS97 (Sheldrick, 2008); program used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphic: DIAMOND (Brandenburg, 2010); overlay scheme: Mercury CSD 2.3

Figures

Fig. 1.
Molecular structure of (I), with the non-H atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Least-squares overlay scheme of the asymmetric units of (I) within phase B (this work, carbon backbone in gray) and phase A (Clerici et al., 2002; carbon backbone in green). Hydrogen atoms omitted for clarity.

Crystal data

C14H17N3O3SF(000) = 648
Mr = 307.37Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2885 reflections
a = 8.3853 (17) Åθ = 2.3–21.6°
b = 17.554 (4) ŵ = 0.22 mm1
c = 10.458 (2) ÅT = 293 K
β = 95.07 (3)°Prism, colourless
V = 1533.4 (5) Å30.18 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer2814 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −10→10
Tmin = 0.855, Tmax = 0.947k = −21→21
16661 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.102All H-atom parameters refined
S = 1.01w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4078P] where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.46791 (6)0.19850 (4)0.39836 (6)0.0569 (2)
O10.1824 (2)0.00687 (9)−0.10877 (14)0.0636 (5)
O20.57694 (19)0.19314 (11)0.51054 (16)0.0758 (5)
O30.53410 (19)0.20903 (10)0.27881 (16)0.0724 (5)
N10.0608 (2)0.20205 (10)0.44220 (16)0.0472 (4)
N20.3156 (2)0.25469 (11)0.41859 (19)0.0611 (5)
N30.3384 (3)0.02616 (14)0.5764 (2)0.0739 (6)
C10.2489 (4)−0.06433 (17)−0.1428 (3)0.0698 (8)
C20.2106 (2)0.03021 (12)0.01541 (19)0.0458 (5)
C30.2867 (3)−0.01266 (14)0.1123 (2)0.0521 (6)
C40.3129 (3)0.01743 (13)0.2346 (2)0.0491 (5)
C50.1573 (3)0.10253 (13)0.0415 (2)0.0497 (5)
C60.1842 (3)0.13239 (13)0.1623 (2)0.0474 (5)
C70.2636 (2)0.09019 (11)0.26096 (18)0.0395 (5)
C80.3043 (2)0.12520 (12)0.39177 (19)0.0425 (5)
C90.2122 (2)0.19738 (12)0.42216 (19)0.0448 (5)
C100.3242 (2)0.06955 (14)0.4954 (2)0.0496 (5)
C11−0.0148 (3)0.27758 (15)0.4525 (3)0.0599 (7)
C12−0.0724 (4)0.3089 (2)0.3236 (3)0.0769 (8)
C13−0.0377 (3)0.13436 (15)0.4614 (2)0.0553 (6)
C14−0.0494 (4)0.1173 (2)0.6015 (3)0.0780 (9)
H1A0.226 (3)−0.0650 (17)−0.234 (3)0.105 (10)*
H1B0.201 (3)−0.1077 (16)−0.096 (3)0.085 (9)*
H1C0.364 (3)−0.0633 (15)−0.122 (2)0.081 (9)*
H30.317 (3)−0.0621 (14)0.100 (2)0.066 (7)*
H40.367 (2)−0.0118 (12)0.299 (2)0.055 (6)*
H50.100 (2)0.1321 (12)−0.027 (2)0.055 (6)*
H60.153 (3)0.1815 (13)0.176 (2)0.056 (7)*
H11A−0.101 (3)0.2705 (13)0.502 (2)0.068 (7)*
H11B0.064 (3)0.3094 (15)0.495 (2)0.078 (9)*
H12A−0.122 (3)0.3602 (18)0.334 (3)0.095 (9)*
H12B−0.152 (4)0.2716 (19)0.279 (3)0.114 (12)*
H12C0.016 (4)0.3143 (15)0.271 (3)0.088 (9)*
H13A−0.139 (3)0.1458 (12)0.4177 (19)0.053 (6)*
H13B0.008 (2)0.0906 (13)0.4177 (19)0.052 (6)*
H14A−0.113 (4)0.073 (2)0.613 (3)0.126 (12)*
H14B−0.094 (3)0.1583 (18)0.642 (3)0.095 (10)*
H14C0.062 (4)0.1065 (18)0.653 (3)0.116 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0428 (3)0.0691 (4)0.0599 (4)−0.0149 (3)0.0108 (3)−0.0137 (3)
O10.0840 (12)0.0642 (11)0.0414 (9)0.0047 (9)−0.0024 (8)−0.0079 (8)
O20.0492 (9)0.1081 (15)0.0690 (11)−0.0171 (9)−0.0014 (8)−0.0233 (10)
O30.0624 (10)0.0883 (13)0.0705 (11)−0.0220 (9)0.0270 (9)−0.0068 (10)
N10.0434 (10)0.0506 (11)0.0489 (10)−0.0011 (8)0.0116 (8)−0.0073 (8)
N20.0559 (12)0.0537 (12)0.0755 (14)−0.0126 (9)0.0162 (10)−0.0154 (10)
N30.0798 (15)0.0884 (17)0.0534 (13)0.0113 (13)0.0047 (11)0.0129 (12)
C10.092 (2)0.0672 (19)0.0505 (17)−0.0020 (17)0.0059 (15)−0.0149 (14)
C20.0466 (12)0.0514 (13)0.0392 (12)−0.0049 (10)0.0033 (9)−0.0013 (10)
C30.0619 (14)0.0448 (14)0.0492 (13)0.0077 (11)0.0032 (10)−0.0051 (11)
C40.0510 (13)0.0524 (14)0.0428 (13)0.0089 (11)−0.0011 (10)0.0024 (11)
C50.0563 (13)0.0506 (14)0.0417 (12)0.0046 (11)0.0010 (10)0.0066 (11)
C60.0517 (13)0.0415 (13)0.0495 (14)0.0046 (10)0.0072 (10)0.0021 (11)
C70.0355 (10)0.0430 (12)0.0405 (11)−0.0034 (9)0.0066 (8)−0.0013 (9)
C80.0371 (11)0.0492 (13)0.0415 (12)−0.0022 (9)0.0054 (9)−0.0042 (10)
C90.0437 (11)0.0491 (13)0.0422 (12)−0.0050 (10)0.0064 (9)−0.0074 (10)
C100.0447 (12)0.0619 (15)0.0421 (13)0.0007 (11)0.0040 (10)−0.0062 (12)
C110.0602 (16)0.0581 (16)0.0635 (17)0.0092 (13)0.0169 (13)−0.0099 (13)
C120.083 (2)0.073 (2)0.077 (2)0.0205 (18)0.0162 (17)0.0058 (17)
C130.0408 (13)0.0619 (16)0.0640 (16)−0.0094 (11)0.0095 (11)−0.0148 (13)
C140.085 (2)0.078 (2)0.077 (2)−0.0188 (19)0.0353 (18)−0.0019 (17)

Geometric parameters (Å, °)

S1—O31.4241 (17)C5—C61.369 (3)
S1—O21.4252 (18)C5—H50.98 (2)
S1—N21.642 (2)C6—C71.391 (3)
S1—C81.878 (2)C6—H60.92 (2)
O1—C21.362 (2)C7—C81.511 (3)
O1—C11.426 (3)C8—C101.457 (3)
N1—C91.307 (3)C8—C91.532 (3)
N1—C131.471 (3)C11—C121.496 (4)
N1—C111.478 (3)C11—H11A0.94 (2)
N2—C91.331 (3)C11—H11B0.95 (3)
N3—C101.138 (3)C12—H12A1.00 (3)
C1—H1A0.96 (3)C12—H12B1.02 (3)
C1—H1B1.01 (3)C12—H12C0.97 (3)
C1—H1C0.97 (3)C13—C141.508 (4)
C2—C31.373 (3)C13—H13A0.95 (2)
C2—C51.381 (3)C13—H13B0.99 (2)
C3—C41.384 (3)C14—H14A0.95 (4)
C3—H30.92 (2)C14—H14B0.93 (3)
C4—C71.377 (3)C14—H14C1.06 (3)
C4—H40.94 (2)
O3—S1—O2117.38 (11)C10—C8—C7113.72 (18)
O3—S1—N2113.77 (11)C10—C8—C9115.25 (17)
O2—S1—N2112.54 (11)C7—C8—C9116.52 (17)
O3—S1—C8113.38 (10)C10—C8—S1113.39 (14)
O2—S1—C8113.47 (10)C7—C8—S1114.70 (13)
N2—S1—C880.92 (9)C9—C8—S178.81 (12)
C2—O1—C1117.5 (2)N1—C9—N2127.0 (2)
C9—N1—C13122.43 (19)N1—C9—C8126.87 (18)
C9—N1—C11119.8 (2)N2—C9—C8106.11 (17)
C13—N1—C11117.72 (19)N3—C10—C8179.4 (2)
C9—N2—S193.77 (15)N1—C11—C12111.7 (2)
O1—C1—H1A102.2 (18)N1—C11—H11A106.2 (15)
O1—C1—H1B111.1 (15)C12—C11—H11A110.1 (15)
H1A—C1—H1B115 (2)N1—C11—H11B106.1 (16)
O1—C1—H1C109.3 (16)C12—C11—H11B111.2 (16)
H1A—C1—H1C109 (2)H11A—C11—H11B111 (2)
H1B—C1—H1C110 (2)C11—C12—H12A109.8 (16)
O1—C2—C3124.6 (2)C11—C12—H12B108.9 (18)
O1—C2—C5115.63 (19)H12A—C12—H12B111 (2)
C3—C2—C5119.7 (2)C11—C12—H12C110.2 (17)
C2—C3—C4119.9 (2)H12A—C12—H12C109 (2)
C2—C3—H3122.2 (15)H12B—C12—H12C108 (2)
C4—C3—H3117.9 (15)N1—C13—C14112.2 (2)
C7—C4—C3120.9 (2)N1—C13—H13A104.7 (13)
C7—C4—H4120.0 (13)C14—C13—H13A112.1 (13)
C3—C4—H4119.1 (13)N1—C13—H13B108.5 (12)
C6—C5—C2120.3 (2)C14—C13—H13B110.8 (12)
C6—C5—H5120.4 (12)H13A—C13—H13B108.2 (17)
C2—C5—H5119.3 (12)C13—C14—H14A111 (2)
C5—C6—C7120.7 (2)C13—C14—H14B110.7 (19)
C5—C6—H6118.4 (14)H14A—C14—H14B109 (3)
C7—C6—H6120.8 (14)C13—C14—H14C113.6 (17)
C4—C7—C6118.55 (19)H14A—C14—H14C106 (3)
C4—C7—C8120.69 (18)H14B—C14—H14C106 (3)
C6—C7—C8120.64 (19)
O3—S1—N2—C9116.10 (15)N2—S1—C8—C10−116.78 (16)
O2—S1—N2—C9−107.28 (15)O3—S1—C8—C7−1.80 (19)
C8—S1—N2—C94.46 (13)O2—S1—C8—C7−139.02 (15)
C1—O1—C2—C3−5.7 (3)N2—S1—C8—C7110.27 (16)
C1—O1—C2—C5174.0 (2)O3—S1—C8—C9−116.00 (13)
O1—C2—C3—C4178.3 (2)O2—S1—C8—C9106.78 (13)
C5—C2—C3—C4−1.5 (3)N2—S1—C8—C9−3.94 (12)
C2—C3—C4—C7−0.1 (3)C13—N1—C9—N2−171.6 (2)
O1—C2—C5—C6−177.87 (19)C11—N1—C9—N25.4 (3)
C3—C2—C5—C61.9 (3)C13—N1—C9—C811.5 (3)
C2—C5—C6—C7−0.8 (3)C11—N1—C9—C8−171.5 (2)
C3—C4—C7—C61.2 (3)S1—N2—C9—N1176.98 (19)
C3—C4—C7—C8−174.95 (19)S1—N2—C9—C8−5.62 (17)
C5—C6—C7—C4−0.7 (3)C10—C8—C9—N1−66.9 (3)
C5—C6—C7—C8175.38 (19)C7—C8—C9—N170.2 (3)
C4—C7—C8—C10−28.1 (3)S1—C8—C9—N1−177.6 (2)
C6—C7—C8—C10155.89 (18)C10—C8—C9—N2115.7 (2)
C4—C7—C8—C9−165.80 (18)C7—C8—C9—N2−107.2 (2)
C6—C7—C8—C918.2 (3)S1—C8—C9—N25.00 (15)
C4—C7—C8—S1104.7 (2)C9—N1—C11—C1285.4 (3)
C6—C7—C8—S1−71.3 (2)C13—N1—C11—C12−97.4 (3)
O3—S1—C8—C10131.15 (16)C9—N1—C13—C1496.4 (3)
O2—S1—C8—C10−6.06 (19)C11—N1—C13—C14−80.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2045).

References

  • Barwick, M., Abu-Izneid, T. & Novak, I. (2008). J. Phys. Chem.112, 10993–10997. [PubMed]
  • Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clerici, F., Galletti, F., Pocar, D. & Roversi, P. (1996). Tetrahedron, 52, 7183–7199.
  • Clerici, F., Gelmi, M. L., Soave, R. & Lo Presti, L. (2002). Tetrahedron, 58, 5173–5178.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography