PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1983.
Published online 2010 July 10. doi:  10.1107/S1600536810026656
PMCID: PMC3007249

N-(3,4-Dimethyl­phen­yl)benzene­sulfonamide

Abstract

The structure of the title compound, C14H15NO2S, shows the sulfonamide N atom to be approximately perpendicular to the plane through the S-bound benzene ring [the N—S—C—C torsion angle is −87.4 (3)°] and to lie to the opposide side of this ring to the two sulfonamide O atoms. The N-bound benzene ring is splayed out with respect to the rest of the mol­ecule so that overall, the mol­ecule adopts a twisted conformation. The dihedral angle between the two benzene rings is 64.5 (3)°. In the crystal, supra­molecular chains aligned along the b axis are formed via N—H(...)O hydrogen bonds.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988 [triangle]); Mandell & Sande (1992 [triangle]). For the structure of the S-tosyl derivative, see: Gowda et al. (2009 [triangle]). For related structures, see: Khan et al. (2010 [triangle]); Sharif et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1983-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S
  • M r = 261.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1983-efi1.jpg
  • a = 24.2129 (12) Å
  • b = 9.2616 (5) Å
  • c = 16.5584 (16) Å
  • β = 132.014 (2)°
  • V = 2758.9 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 K
  • 0.31 × 0.08 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.795, T max = 0.947
  • 11486 measured reflections
  • 2864 independent reflections
  • 2112 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.196
  • S = 1.09
  • 2864 reflections
  • 168 parameters
  • 37 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026656/hb5533sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026656/hb5533Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

supplementary crystallographic information

Comment

In continuation of on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), of interest owing to their putative anti-microbial activity (Korolkovas, 1988; Mandell & Sande, 1992), the crystal and molecular structure of the title compound, (I), was investigated.

In (I), both sulfonamido-O atoms lie to one side of the S-bound benzene ring [the O1–S1–C1–C6 and O2–S1–C1–C2 torsion angles are 19.3 (4) and -28.0 (3) °, respectively] and are on the opposite side of this ring to the sulfonamido-N1 atom, Fig. 1. The latter is approximately perpendicular to the benzene ring [N1–S1–C1–C2 is -87.4 (3) °] with the N-bound benzene ring clearly displaced to one side of the molecule; the dihedral angle formed between the two benzene rings is 64.5 (3) °. Although not isomorphous, the overall molecular conformation found in the closely related derivative, with an S-bound tolsyl group, is almost identical (Gowda et al. 2009).

The presence of N1–H···O2 hydrogen bonding, Table 1, leads to the formation of supramolecular chains along the b axis, Fig. 2.

Experimental

To 3,4-dimethyl aniline (484 mg, 4 mmol) in distilled water (10 ml) was added benzene sulfonyl chloride (510 ml, 4 mmol) with stirring at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The precipitate formed was washed with water, dried and crystallized from a methanol/ethyl acetate mixture (50:50 V/V) to yield colourless prisms of (I); m. pt 414 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N). High thermal motion was noted for several atoms in the S-bound benzene ring but multiple positions were not resolved. The anisotropic displacement parameters for this ring were refined with the ISOR command to constrain these to be approximately isotropic.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
Fig. 2.
A view of the supramolecular chain mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2975 reflections
a = 24.2129 (12) Åθ = 2.5–24.2°
b = 9.2616 (5) ŵ = 0.23 mm1
c = 16.5584 (16) ÅT = 293 K
β = 132.014 (2)°Prism, colourless
V = 2758.9 (3) Å30.31 × 0.08 × 0.07 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer2864 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −30→30
Tmin = 0.795, Tmax = 0.947k = −11→11
11486 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.1221P)2 + 0.6451P] where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.56 e Å3
37 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.21969 (4)0.08206 (8)0.26474 (6)0.0437 (3)
O10.16507 (13)0.0323 (3)0.15598 (16)0.0610 (6)
O20.22892 (12)0.2337 (2)0.28664 (18)0.0567 (6)
N10.29812 (14)0.0196 (3)0.3083 (2)0.0492 (6)
H1n0.291 (2)−0.063 (2)0.280 (3)0.059*
C10.20212 (16)0.0052 (3)0.3427 (2)0.0448 (7)
C20.2297 (2)0.0696 (4)0.4375 (3)0.0690 (10)
H20.25860.15260.46130.083*
C30.2149 (3)0.0117 (5)0.4979 (3)0.0875 (13)
H30.23370.05570.56250.105*
C40.1730 (3)−0.1089 (5)0.4635 (4)0.0935 (14)
H40.1643−0.14970.50540.112*
C50.1437 (4)−0.1704 (6)0.3671 (5)0.1114 (18)
H50.1129−0.25070.34180.134*
C60.1591 (3)−0.1147 (5)0.3065 (4)0.0851 (13)
H60.1403−0.15880.24200.102*
C70.36691 (17)0.0393 (3)0.4183 (2)0.0470 (7)
C80.39442 (19)0.1756 (3)0.4603 (3)0.0537 (8)
H80.36730.25620.41780.064*
C90.46209 (19)0.1938 (4)0.5652 (3)0.0607 (9)
C100.50388 (19)0.0737 (4)0.6287 (3)0.0638 (10)
C110.4750 (2)−0.0623 (4)0.5834 (3)0.0683 (10)
H110.5022−0.14360.62460.082*
C120.4080 (2)−0.0805 (4)0.4804 (3)0.0581 (8)
H120.3902−0.17280.45230.070*
C130.4905 (3)0.3462 (5)0.6065 (4)0.1030 (16)
H13A0.50750.35590.67780.154*
H13B0.45110.41390.55810.154*
H13C0.53090.36530.60960.154*
C140.5778 (2)0.0900 (6)0.7430 (3)0.0921 (15)
H14A0.60530.16720.74540.138*
H14B0.60540.00170.76540.138*
H14C0.56970.11150.79120.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0524 (5)0.0421 (5)0.0424 (4)0.0023 (3)0.0340 (4)0.0028 (3)
O10.0623 (14)0.0769 (16)0.0388 (12)−0.0017 (12)0.0317 (11)−0.0011 (10)
O20.0678 (14)0.0410 (12)0.0680 (14)0.0076 (10)0.0483 (13)0.0091 (10)
N10.0572 (15)0.0462 (14)0.0533 (15)−0.0004 (12)0.0407 (13)−0.0075 (12)
C10.0560 (16)0.0416 (15)0.0466 (15)−0.0004 (12)0.0384 (14)−0.0012 (12)
C20.089 (2)0.072 (2)0.0622 (19)−0.0237 (18)0.0574 (19)−0.0184 (16)
C30.118 (3)0.102 (3)0.071 (2)−0.024 (2)0.075 (2)−0.019 (2)
C40.132 (3)0.098 (3)0.091 (3)−0.025 (3)0.092 (3)−0.005 (2)
C50.155 (4)0.101 (3)0.118 (3)−0.054 (3)0.108 (3)−0.021 (2)
C60.121 (3)0.079 (2)0.084 (2)−0.038 (2)0.080 (2)−0.026 (2)
C70.0513 (16)0.0521 (17)0.0538 (17)0.0004 (13)0.0418 (15)0.0004 (14)
C80.0551 (18)0.0536 (19)0.0588 (19)0.0010 (14)0.0408 (17)−0.0001 (14)
C90.0553 (19)0.071 (2)0.064 (2)−0.0095 (17)0.0436 (18)−0.0090 (18)
C100.0481 (19)0.094 (3)0.058 (2)−0.0018 (18)0.0389 (17)0.0061 (19)
C110.062 (2)0.075 (3)0.074 (2)0.0142 (18)0.048 (2)0.0238 (19)
C120.061 (2)0.0554 (19)0.067 (2)0.0035 (15)0.0462 (18)0.0068 (16)
C130.078 (3)0.098 (4)0.091 (3)−0.020 (3)0.039 (3)−0.022 (3)
C140.058 (2)0.142 (4)0.068 (3)−0.008 (2)0.038 (2)0.011 (3)

Geometric parameters (Å, °)

S1—O11.420 (2)C7—C81.379 (4)
S1—O21.430 (2)C7—C121.381 (4)
S1—N11.621 (3)C8—C91.386 (5)
S1—C11.758 (3)C8—H80.9300
N1—C71.436 (4)C9—C101.394 (5)
N1—H1n0.85 (3)C9—C131.518 (6)
C1—C61.356 (5)C10—C111.392 (5)
C1—C21.364 (4)C10—C141.508 (5)
C2—C31.379 (5)C11—C121.365 (5)
C2—H20.9300C11—H110.9300
C3—C41.351 (6)C12—H120.9300
C3—H30.9300C13—H13A0.9600
C4—C51.363 (6)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.384 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O1—S1—O2119.67 (15)C12—C7—N1119.2 (3)
O1—S1—N1105.54 (14)C7—C8—C9120.7 (3)
O2—S1—N1107.46 (13)C7—C8—H8119.7
O1—S1—C1108.80 (14)C9—C8—H8119.7
O2—S1—C1106.57 (13)C8—C9—C10120.1 (3)
N1—S1—C1108.39 (14)C8—C9—C13118.5 (4)
C7—N1—S1122.54 (19)C10—C9—C13121.4 (4)
C7—N1—H1N117 (2)C11—C10—C9117.8 (3)
S1—N1—H1N109 (2)C11—C10—C14120.9 (4)
C6—C1—C2120.5 (3)C9—C10—C14121.3 (4)
C6—C1—S1119.9 (2)C12—C11—C10122.2 (3)
C2—C1—S1119.6 (2)C12—C11—H11118.9
C1—C2—C3120.0 (4)C10—C11—H11118.9
C1—C2—H2120.0C11—C12—C7119.5 (3)
C3—C2—H2120.0C11—C12—H12120.2
C4—C3—C2120.1 (4)C7—C12—H12120.2
C4—C3—H3120.0C9—C13—H13A109.5
C2—C3—H3120.0C9—C13—H13B109.5
C3—C4—C5119.7 (4)H13A—C13—H13B109.5
C3—C4—H4120.1C9—C13—H13C109.5
C5—C4—H4120.1H13A—C13—H13C109.5
C4—C5—C6120.7 (4)H13B—C13—H13C109.5
C4—C5—H5119.7C10—C14—H14A109.5
C6—C5—H5119.7C10—C14—H14B109.5
C1—C6—C5119.0 (4)H14A—C14—H14B109.5
C1—C6—H6120.5C10—C14—H14C109.5
C5—C6—H6120.5H14A—C14—H14C109.5
C8—C7—C12119.7 (3)H14B—C14—H14C109.5
C8—C7—N1121.0 (3)
O1—S1—N1—C7−176.1 (2)C4—C5—C6—C1−2.1 (9)
O2—S1—N1—C755.1 (3)S1—N1—C7—C8−60.8 (4)
C1—S1—N1—C7−59.7 (3)S1—N1—C7—C12123.0 (3)
O1—S1—C1—C619.3 (4)C12—C7—C8—C9−1.6 (4)
O2—S1—C1—C6149.6 (3)N1—C7—C8—C9−177.7 (3)
N1—S1—C1—C6−95.0 (4)C7—C8—C9—C101.4 (5)
O1—S1—C1—C2−158.3 (3)C7—C8—C9—C13178.7 (3)
O2—S1—C1—C2−28.0 (3)C8—C9—C10—C11−0.5 (5)
N1—S1—C1—C287.4 (3)C13—C9—C10—C11−177.8 (4)
C6—C1—C2—C30.9 (6)C8—C9—C10—C14179.9 (3)
S1—C1—C2—C3178.6 (3)C13—C9—C10—C142.6 (5)
C1—C2—C3—C40.1 (7)C9—C10—C11—C12−0.2 (5)
C2—C3—C4—C5−2.1 (9)C14—C10—C11—C12179.4 (3)
C3—C4—C5—C63.1 (10)C10—C11—C12—C7−0.1 (5)
C2—C1—C6—C50.1 (7)C8—C7—C12—C110.9 (5)
S1—C1—C6—C5−177.6 (4)N1—C7—C12—C11177.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.85 (3)2.07 (2)2.921 (3)177 (5)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5533).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877. [PMC free article] [PubMed]
  • Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088. [PMC free article] [PubMed]
  • Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.
  • Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.
  • Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography