PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2186.
Published online 2010 July 31. doi:  10.1107/S1600536810030138
PMCID: PMC3007248

N-(4-Chloro­phen­yl)-4-methyl­pyridin-2-amine

Abstract

In the title compound, C12H11ClN2, the dihedral angle between the benzene and pyridyl rings is 48.03 (8)°. Twists are also evident in the mol­ecule, in particular about the Na–Cb (a = amine and b = benzene) bond [C—N—C—C = −144.79 (18)°]. In the crystal, inversion dimers linked by pairs of N—H(...)N hydrogen bonds result in the formation of eight-membered {(...)NCNH}2 synthons [or R 2 2(8) loops].

Related literature

For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001 [triangle]); Abdullah (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2186-scheme1.jpg

Experimental

Crystal data

  • C12H11ClN2
  • M r = 218.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2186-efi1.jpg
  • a = 15.9335 (15) Å
  • b = 4.0651 (4) Å
  • c = 17.0153 (16) Å
  • β = 98.755 (1)°
  • V = 1089.26 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 293 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.776, T max = 0.862
  • 9785 measured reflections
  • 2509 independent reflections
  • 1886 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.132
  • S = 1.04
  • 2509 reflections
  • 141 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030138/hb5582sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030138/hb5582Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AZ thanks the Ministry of Higher Education, Malaysia, for research grants (RG027/09AFR and PS374/2009B). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title compound, (I), was investigated in the context of potential fluorescence properties (Kawai et al. 2001; Abdullah, 2005). The molecular structure of (I), Fig. 1, shows that the molecule is non-planar as seen in the dihedral angle of 48.03 (8) ° formed between the benzene and pyridyl rings, and in the twists about the central N–C bonds, i.e. the C7–N2–C1–N1 and C1–N2–C7–C8 torsion angles are -167.92 (17) and -144.79 (18) °, respectively. The amine-H and pyridine-N atoms are orientated in the same direction, an arrangement that facilitates the formation of N–H···N hydrogen bonds. Thus, centrosymmetrically related molecules are linked via N–H···N hydrogen bonds that lead to eight-membered {···NCNH}2 synthons, Table 1. The dimeric aggregates stack along the b axis, Fig. 2.

Experimental

2-Chloro-4-methylpyridine (1.0 ml, 1.14 mmol) was added to 4-chloroaniline (1.4543 g, 1.14 mmol) and heated for 2 h. The mixture was cooled and dissolved water (15 ml), extracted with diethyl ether (3 × 10 ml), washed with water (3 × 10 ml), and then dried over anhydrous sodium sulfate. Evaporation of the solvent gave a gray solid. Recrystallization from ethanol yielded colourless blocks of (I).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
Fig. 2.
Unit-cell contents shown in projection down the b axis in (I). The N–H···N hydrogen bonding is shown as orange dashed lines.

Crystal data

C12H11ClN2F(000) = 456
Mr = 218.68Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2763 reflections
a = 15.9335 (15) Åθ = 2.4–25.7°
b = 4.0651 (4) ŵ = 0.32 mm1
c = 17.0153 (16) ÅT = 293 K
β = 98.755 (1)°Block, colourless
V = 1089.26 (18) Å30.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2509 independent reflections
Radiation source: fine-focus sealed tube1886 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −20→19
Tmin = 0.776, Tmax = 0.862k = −5→5
9785 measured reflectionsl = −22→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1992P] where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.59502 (4)1.02913 (16)0.10424 (3)0.0834 (2)
N10.60831 (9)0.5290 (4)0.56614 (8)0.0495 (4)
N20.57324 (9)0.6997 (4)0.43820 (9)0.0552 (4)
H2n0.5222 (7)0.653 (5)0.4444 (11)0.061 (6)*
C10.63451 (10)0.6751 (4)0.50365 (9)0.0439 (4)
C20.66466 (12)0.5088 (5)0.63260 (11)0.0578 (5)
H20.64720.41010.67670.069*
C30.74612 (12)0.6230 (5)0.64035 (10)0.0570 (5)
H30.78270.59850.68810.068*
C40.77369 (11)0.7769 (4)0.57556 (10)0.0498 (4)
C50.71648 (10)0.8019 (4)0.50667 (10)0.0461 (4)
H50.73230.90300.46210.055*
C60.86175 (12)0.9137 (6)0.58031 (13)0.0661 (5)
H6A0.86201.08470.54140.099*
H6B0.89990.74160.57010.099*
H6C0.87971.00230.63250.099*
C70.58319 (10)0.7850 (4)0.36041 (9)0.0428 (4)
C80.51945 (11)0.9664 (4)0.31600 (11)0.0496 (4)
H80.47401.04060.33960.059*
C90.52239 (12)1.0389 (4)0.23723 (11)0.0544 (4)
H90.47891.15880.20770.065*
C100.59014 (12)0.9323 (4)0.20290 (10)0.0493 (4)
C110.65418 (11)0.7545 (4)0.24569 (10)0.0481 (4)
H110.69980.68430.22190.058*
C120.65108 (10)0.6791 (4)0.32428 (10)0.0462 (4)
H120.69460.55700.35320.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1035 (5)0.0997 (5)0.0472 (3)−0.0123 (3)0.0123 (3)0.0172 (3)
N10.0440 (8)0.0626 (9)0.0425 (8)0.0058 (6)0.0082 (6)0.0026 (6)
N20.0364 (8)0.0858 (12)0.0428 (8)−0.0052 (7)0.0048 (6)0.0083 (7)
C10.0414 (8)0.0494 (9)0.0409 (8)0.0059 (7)0.0061 (6)−0.0034 (7)
C20.0582 (11)0.0722 (13)0.0430 (9)0.0070 (9)0.0072 (8)0.0058 (8)
C30.0574 (11)0.0673 (11)0.0424 (9)0.0083 (9)−0.0051 (8)−0.0042 (8)
C40.0481 (9)0.0476 (9)0.0515 (10)0.0039 (7)0.0006 (7)−0.0127 (7)
C50.0452 (9)0.0486 (9)0.0439 (9)−0.0008 (7)0.0049 (7)−0.0019 (7)
C60.0535 (11)0.0693 (12)0.0705 (13)−0.0074 (9)−0.0066 (9)−0.0119 (10)
C70.0379 (8)0.0485 (9)0.0409 (8)−0.0039 (7)0.0027 (6)−0.0004 (7)
C80.0436 (9)0.0535 (10)0.0512 (10)0.0057 (7)0.0059 (7)−0.0012 (7)
C90.0539 (10)0.0521 (10)0.0541 (10)0.0051 (8)−0.0019 (8)0.0089 (8)
C100.0572 (10)0.0488 (9)0.0411 (8)−0.0110 (8)0.0052 (7)0.0025 (7)
C110.0440 (9)0.0518 (10)0.0495 (9)−0.0053 (7)0.0101 (7)−0.0027 (7)
C120.0373 (8)0.0517 (9)0.0486 (9)0.0024 (7)0.0032 (7)0.0034 (7)

Geometric parameters (Å, °)

Cl1—C101.7376 (18)C6—H6A0.9600
N1—C21.335 (2)C6—H6B0.9600
N1—C11.339 (2)C6—H6C0.9600
N2—C11.368 (2)C7—C81.383 (2)
N2—C71.400 (2)C7—C121.391 (2)
N2—H2n0.857 (9)C8—C91.380 (2)
C1—C51.398 (2)C8—H80.9300
C2—C31.366 (3)C9—C101.373 (3)
C2—H20.9300C9—H90.9300
C3—C41.396 (3)C10—C111.367 (2)
C3—H30.9300C11—C121.380 (2)
C4—C51.375 (2)C11—H110.9300
C4—C61.500 (3)C12—H120.9300
C5—H50.9300
C2—N1—C1116.69 (15)C4—C6—H6C109.5
C1—N2—C7128.17 (14)H6A—C6—H6C109.5
C1—N2—H2n117.2 (13)H6B—C6—H6C109.5
C7—N2—H2n114.6 (13)C8—C7—C12118.64 (15)
N1—C1—N2114.12 (15)C8—C7—N2117.97 (15)
N1—C1—C5122.47 (15)C12—C7—N2123.27 (15)
N2—C1—C5123.36 (15)C9—C8—C7120.91 (16)
N1—C2—C3124.59 (18)C9—C8—H8119.5
N1—C2—H2117.7C7—C8—H8119.5
C3—C2—H2117.7C10—C9—C8119.40 (16)
C2—C3—C4119.00 (16)C10—C9—H9120.3
C2—C3—H3120.5C8—C9—H9120.3
C4—C3—H3120.5C11—C10—C9120.77 (16)
C5—C4—C3117.32 (16)C11—C10—Cl1119.67 (14)
C5—C4—C6120.81 (17)C9—C10—Cl1119.55 (14)
C3—C4—C6121.87 (16)C10—C11—C12119.99 (16)
C4—C5—C1119.92 (16)C10—C11—H11120.0
C4—C5—H5120.0C12—C11—H11120.0
C1—C5—H5120.0C11—C12—C7120.28 (15)
C4—C6—H6A109.5C11—C12—H12119.9
C4—C6—H6B109.5C7—C12—H12119.9
H6A—C6—H6B109.5
C2—N1—C1—N2−177.70 (15)C1—N2—C7—C8−144.79 (18)
C2—N1—C1—C50.0 (2)C1—N2—C7—C1239.4 (3)
C7—N2—C1—N1−167.92 (17)C12—C7—C8—C90.6 (3)
C7—N2—C1—C514.4 (3)N2—C7—C8—C9−175.42 (16)
C1—N1—C2—C3−0.7 (3)C7—C8—C9—C10−0.8 (3)
N1—C2—C3—C41.0 (3)C8—C9—C10—C110.3 (3)
C2—C3—C4—C5−0.6 (3)C8—C9—C10—Cl1−178.88 (14)
C2—C3—C4—C6178.85 (18)C9—C10—C11—C120.2 (3)
C3—C4—C5—C1−0.1 (2)Cl1—C10—C11—C12179.44 (13)
C6—C4—C5—C1−179.50 (17)C10—C11—C12—C7−0.4 (3)
N1—C1—C5—C40.4 (3)C8—C7—C12—C11−0.1 (2)
N2—C1—C5—C4177.85 (16)N2—C7—C12—C11175.77 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2n···N1i0.86 (1)2.19 (1)3.029 (2)167 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5582).

References

  • Abdullah, Z. (2005). Int. J. Chem. Sci 3, 9–15.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc.11, 23–32.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography