PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m894.
Published online 2010 July 7. doi:  10.1107/S1600536810026000
PMCID: PMC3007245

(1,4,7,10-Tetra­aza­cyclo­dodecane-κ4 N 1,N 4,N 7,N 10)(tetra­oxidomolybdato-κO)copper(II) monohydrate

Abstract

In the title compound, [CuMoO4(C8H20N4)]·H2O, the CuII atom is coordinated by four N atoms of the 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) ligand and one O atom of the molybdate unit in a distorted square-pyramidal environment. The water mol­ecules are linked to the complex unit to form centrosymmetric dimers [R 4 4(12) and R 4 4(16)] and discrete D 3 2(9), D 3 3(11) and D 3 3(13) chains by O—H(...)O and N—H(...)O inter­actions. Additionally, the complex mol­ecules are linked into C 4 4(18) chain motifs by N—H(...)O inter­actions. As a result [(cyclen)CuMoO4] units and water molecules are linked to layers that are oriented parallel to the ac plane. The stacking of the layers in the b-axis direction is supported by weak C—H(...)O hydrogen bridges.

Related literature

For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see, for example: Rarig et al. (2002 [triangle]); Hagrman et al. (1998 [triangle]). For copper complexes with the cyclen ligand, see: Clay et al. (1979 [triangle]); Lu et al. (1997 [triangle]); Yeung et al. (2000 [triangle]); Guo et al. (2008 [triangle]). For related literature, see: Bernstein et al. (1995 [triangle]); Choi et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m894-scheme1.jpg

Experimental

Crystal data

  • [CuMoO4(C8H20N4)]·H2O
  • M r = 413.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m894-efi1.jpg
  • a = 8.6985 (6) Å
  • b = 8.9784 (6) Å
  • c = 9.0055 (6) Å
  • α = 90.358 (6)°
  • β = 91.949 (6)°
  • γ = 100.742 (5)°
  • V = 690.54 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.47 mm−1
  • T = 200 K
  • 0.22 × 0.21 × 0.13 mm

Data collection

  • Stoe IPDS 2T diffractometer
  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009 [triangle]) T min = 0.612, T max = 0.737
  • 9700 measured reflections
  • 3017 independent reflections
  • 2788 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.063
  • S = 1.04
  • 3017 reflections
  • 196 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −1.05 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810026000/bx2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026000/bx2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the title compound (I) the central copper atom is coordinated by four nitrogen atoms of the cyclen ligand and one oxygen atom of the molydate group. This leads to a distorted square pyramidal coordination environment with the four N atoms in the basal positions and the molybdate oxygen atom at the apex. The arrangement of the four nitrogen atoms is nearly co-planar within a maximum deviation of 0.015 Å and the copper atom lies 0.569 Å above this plane. The Cu—N distances ranging from 2.033 (2) to 2.049 (2) Å which is comparable to the Cu—N bond lengths oberserved in other cyclen copper complexes, like [(cyclen)Cu(NO3)]NO3 (Clay et al., 1979), [(cyclen)Cu(SCN)]2[Ca(NCS)6] H2O (Lu et al., 1997), [(cyclen)Cu(Ag(CN)2)][Ag(CN)2] (Yeung et al., 2000) and [(cyclen)Cu(MnN(CN)5)] (Guo et al., 2008). The molybdate unit coordinates as a monodentate ligand with a Cu—O distance of 2.104 (2) Å. The Mo—O distances ranging from 1.749 to 1.765 Å for the terminal oxygen atoms. In the case of the µ-bridging O atom O1 the Mo—O distance is slightly enlarged to 1.796 (2) Å. A similar monodentate coordination of molybdate has been observed in the copper complex [LCuMoO4]2 5H2O (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane with Cu—O distances of 2.320 (12) and 2.418 (11) Å and Mo—O distances ranging from 1.621 to 1.849 Å (Choi et al., 2004).

Compound (I) contains a water molecule which is involved into two strong hydrogen bonds to the molybdate O2 and O4 oxygen atoms . This leads to [(cyclen)CuMoO4]2(H2O)2 dimers containing a centrosymmetric Mo2O6H4 ring of the type R44(12) (Fig. 2) (Bernstein et al., 1995). Additionally the NH groups of the cyclen ligand are also involved in hydrogen bonds either to water molecules (N1H1 and N4H4) or to molybdate groups (N2H2 and N3H3). As a resuslt of these hydrogen bonds [(cyclen)CuMoO4] units and water are interlinked to layers which are oriented parallel to the crystallographic a-c plane. The stacking of the layers in direction of the crystallographic b axis is supported by weak C—H···O hydrogen bonds (C···O 3.35 Å) between cyclen ligands and molydate units.

Experimental

To a stirred suspension of 0.440 mg (2.0 mmol) CuMoO4 in 70 ml of aqueous methanol (90%) 0.350 mg (2.0 mmol) cyclen was added. After four hours the blue suspension was filtered and the filtrate evaporated to dryness.Yield. 420 mg (50%). The residue was dissolved in 3 ml of methanol and then the solution was layered with 2-propanol. After one week single crystals of (I) were formed at the methanol/2-propanol interface. IR(cm-1): 3172(s), 2960(w), 2937(w), 2920(w), 2869(w), 1631(w), 1592(w), 824(s); Elemental Analysis [Cu(cyclen)MoO4] H2O (413.78), C 23.0 (calc. 23.2), H 5.4 (5.4), N 13.1 (13.5) %.

Refinement

C-bound H atoms of the cyclen ligand were positioned geometrically and refinded using a riding model with Uiso(H) = 1.2 Ueq(C) [(C-H) = 0.99 Å]. H atoms attached to N and O were located from difference fourier maps and refined with N-H distances fixed in a range of 0.87 (2) to 0.89 (2) Å and O-H distances fixed at 0.83 (2) and 0.84 (2) Å. The corresponding Uiso(H) were refined freely.

Figures

Fig. 1.
Molecular structure of the [(cyclen)CuMoO4] unit. Thermal ellipsoids are drawn at the 50% probability level.
Fig. 2.
[(cyclen)CuMoO4]2(H2O)2 dimers formed by hydrogen bonds. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (iv) x, y, -1 + z
Fig. 3.
N—H···O hydrogen bonds around the [(cyclen)CuMoO4] unit. Symmetry codes (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, 1 + z
Fig. 4.
Stacking of the [(cyclen)CuMoO4]H2O layers along the crystallographic b axis.

Crystal data

[CuMoO4(C8H20N4)]·H2OZ = 2
Mr = 413.78F(000) = 418
Triclinic, P1Dx = 1.990 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6985 (6) ÅCell parameters from 16326 reflections
b = 8.9784 (6) Åθ = 3.0–29.6°
c = 9.0055 (6) ŵ = 2.47 mm1
α = 90.358 (6)°T = 200 K
β = 91.949 (6)°Plate, blue
γ = 100.742 (5)°0.22 × 0.21 × 0.13 mm
V = 690.54 (8) Å3

Data collection

Stoe IPDS 2T diffractometer3017 independent reflections
Radiation source: fine-focus sealed tube2788 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 3.0°
rotation method scansh = −11→11
Absorption correction: numerical (X-RED; Stoe & Cie, 2009)k = −11→11
Tmin = 0.612, Tmax = 0.737l = −11→10
9700 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2037P] where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.002
196 parametersΔρmax = 0.48 e Å3
6 restraintsΔρmin = −1.05 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0572 (3)0.1738 (3)0.7826 (3)0.0250 (4)
H1B0.97960.07940.76360.030*
H1A1.14630.14850.84220.030*
C21.1135 (3)0.2435 (3)0.6371 (3)0.0262 (5)
H2B1.20080.33000.65650.031*
H2A1.15230.16750.57570.031*
C30.8796 (3)0.1769 (2)0.4653 (2)0.0226 (4)
H3B0.84880.08450.52480.027*
H3A0.93490.15040.37750.027*
C40.7365 (3)0.2401 (3)0.4169 (3)0.0264 (5)
H4B0.76720.32730.35060.032*
H4A0.66100.16140.36150.032*
C50.5518 (3)0.1652 (2)0.6197 (3)0.0227 (4)
H5B0.59890.07320.62750.027*
H5A0.45390.14030.55790.027*
C60.5167 (3)0.2183 (3)0.7734 (3)0.0246 (5)
H6B0.45710.30190.76450.030*
H6A0.45210.13380.82610.030*
C70.7290 (3)0.1527 (3)0.9414 (3)0.0272 (5)
H7B0.72840.06350.87610.033*
H7A0.66400.11981.02770.033*
C80.8955 (3)0.2202 (3)0.9938 (3)0.0289 (5)
H8B0.89450.30041.06950.035*
H8A0.94600.14051.03930.035*
N10.9846 (2)0.2852 (2)0.8642 (2)0.0224 (4)
H11.060 (3)0.356 (3)0.895 (3)0.027 (7)*
N20.9827 (2)0.2966 (2)0.5561 (2)0.0214 (4)
H21.023 (3)0.370 (3)0.494 (3)0.028 (7)*
N30.6625 (2)0.2895 (2)0.5510 (2)0.0216 (4)
H30.616 (3)0.365 (3)0.526 (4)0.036 (8)*
N40.6657 (2)0.2715 (2)0.8587 (2)0.0218 (4)
H40.650 (4)0.339 (3)0.924 (3)0.032 (8)*
O10.86208 (19)0.58802 (17)0.7174 (2)0.0254 (3)
O20.6912 (2)0.7196 (2)0.9423 (2)0.0353 (4)
O30.7520 (2)0.87043 (18)0.6678 (2)0.0310 (4)
O40.5312 (2)0.58763 (19)0.6764 (2)0.0290 (4)
Cu0.83378 (3)0.35012 (3)0.71091 (3)0.01771 (8)
Mo0.70937 (2)0.692556 (18)0.750742 (19)0.01796 (7)
O50.6967 (2)0.4797 (2)0.1142 (2)0.0292 (4)
H50.621 (3)0.452 (3)0.168 (3)0.033 (8)*
H60.678 (5)0.556 (3)0.069 (4)0.058 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0261 (11)0.0227 (10)0.0282 (11)0.0109 (9)−0.0037 (9)−0.0040 (9)
C20.0220 (11)0.0245 (11)0.0330 (12)0.0070 (9)0.0008 (9)−0.0045 (9)
C30.0269 (11)0.0193 (10)0.0219 (10)0.0044 (8)0.0027 (8)−0.0037 (8)
C40.0320 (12)0.0280 (11)0.0195 (10)0.0068 (9)−0.0017 (9)−0.0009 (8)
C50.0204 (10)0.0188 (10)0.0281 (11)0.0021 (8)−0.0020 (9)−0.0031 (8)
C60.0189 (10)0.0226 (10)0.0319 (12)0.0029 (8)0.0021 (9)−0.0027 (9)
C70.0331 (13)0.0239 (11)0.0247 (11)0.0047 (9)0.0038 (9)0.0039 (9)
C80.0357 (13)0.0306 (12)0.0215 (11)0.0099 (10)−0.0027 (9)−0.0001 (9)
N10.0219 (9)0.0202 (9)0.0251 (9)0.0053 (7)−0.0039 (7)−0.0042 (7)
N20.0231 (9)0.0162 (8)0.0247 (9)0.0028 (7)0.0027 (7)−0.0005 (7)
N30.0233 (9)0.0183 (8)0.0245 (9)0.0078 (7)−0.0026 (7)0.0005 (7)
N40.0255 (9)0.0164 (8)0.0238 (9)0.0048 (7)0.0005 (7)−0.0032 (7)
O10.0254 (8)0.0135 (7)0.0378 (9)0.0048 (6)0.0036 (7)0.0007 (6)
O20.0475 (11)0.0360 (10)0.0237 (9)0.0112 (8)0.0024 (8)−0.0024 (7)
O30.0388 (10)0.0194 (8)0.0370 (10)0.0095 (7)0.0086 (8)0.0038 (7)
O40.0268 (9)0.0279 (8)0.0325 (9)0.0062 (7)−0.0039 (7)−0.0001 (7)
Cu0.01851 (14)0.01362 (13)0.02126 (14)0.00388 (10)−0.00018 (10)−0.00115 (10)
Mo0.02191 (11)0.01353 (10)0.01901 (11)0.00478 (7)0.00084 (7)0.00004 (7)
O50.0301 (9)0.0259 (8)0.0324 (9)0.0067 (7)0.0048 (7)−0.0017 (7)

Geometric parameters (Å, °)

C1—N11.482 (3)C7—C81.520 (4)
C1—C21.513 (3)C7—H7B0.9900
C1—H1B0.9900C7—H7A0.9900
C1—H1A0.9900C8—N11.484 (3)
C2—N21.484 (3)C8—H8B0.9900
C2—H2B0.9900C8—H8A0.9900
C2—H2A0.9900N1—Cu2.034 (2)
C3—N21.486 (3)N1—H10.864 (17)
C3—C41.513 (3)N2—Cu2.0493 (19)
C3—H3B0.9900N2—H20.890 (17)
C3—H3A0.9900N3—Cu2.033 (2)
C4—N31.491 (3)N3—H30.881 (18)
C4—H4B0.9900N4—Cu2.0413 (19)
C4—H4A0.9900N4—H40.875 (17)
C5—N31.485 (3)O1—Mo1.7955 (16)
C5—C61.520 (3)O1—Cu2.1043 (15)
C5—H5B0.9900O2—Mo1.7571 (18)
C5—H5A0.9900O3—Mo1.7490 (16)
C6—N41.482 (3)O4—Mo1.7652 (17)
C6—H6B0.9900O5—H50.829 (18)
C6—H6A0.9900O5—H60.838 (19)
C7—N41.482 (3)
N1—C1—C2108.15 (18)N1—C8—H8A109.9
N1—C1—H1B110.1C7—C8—H8A109.9
C2—C1—H1B110.1H8B—C8—H8A108.3
N1—C1—H1A110.1C1—N1—C8113.52 (18)
C2—C1—H1A110.1C1—N1—Cu103.80 (14)
H1B—C1—H1A108.4C8—N1—Cu109.08 (15)
N2—C2—C1109.64 (18)C1—N1—H1107 (2)
N2—C2—H2B109.7C8—N1—H1109 (2)
C1—C2—H2B109.7Cu—N1—H1115 (2)
N2—C2—H2A109.7C2—N2—C3114.06 (17)
C1—C2—H2A109.7C2—N2—Cu107.64 (14)
H2B—C2—H2A108.2C3—N2—Cu102.43 (13)
N2—C3—C4107.08 (18)C2—N2—H2108.6 (19)
N2—C3—H3B110.3C3—N2—H2107.2 (19)
C4—C3—H3B110.3Cu—N2—H2117 (2)
N2—C3—H3A110.3C5—N3—C4113.35 (17)
C4—C3—H3A110.3C5—N3—Cu103.78 (14)
H3B—C3—H3A108.6C4—N3—Cu107.78 (14)
N3—C4—C3109.07 (18)C5—N3—H3111 (2)
N3—C4—H4B109.9C4—N3—H3109 (2)
C3—C4—H4B109.9Cu—N3—H3112 (2)
N3—C4—H4A109.9C6—N4—C7115.36 (18)
C3—C4—H4A109.9C6—N4—Cu107.91 (14)
H4B—C4—H4A108.3C7—N4—Cu104.25 (14)
N3—C5—C6108.09 (17)C6—N4—H4108 (2)
N3—C5—H5B110.1C7—N4—H4107 (2)
C6—C5—H5B110.1Cu—N4—H4114.3 (19)
N3—C5—H5A110.1Mo—O1—Cu125.18 (8)
C6—C5—H5A110.1N3—Cu—N1148.36 (7)
H5B—C5—H5A108.4N3—Cu—N485.93 (8)
N4—C6—C5109.38 (18)N1—Cu—N484.96 (8)
N4—C6—H6B109.8N3—Cu—N285.57 (8)
C5—C6—H6B109.8N1—Cu—N285.70 (8)
N4—C6—H6A109.8N4—Cu—N2146.84 (7)
C5—C6—H6A109.8N3—Cu—O1102.97 (7)
H6B—C6—H6A108.2N1—Cu—O1108.66 (7)
N4—C7—C8107.65 (18)N4—Cu—O1106.23 (7)
N4—C7—H7B110.2N2—Cu—O1106.91 (7)
C8—C7—H7B110.2O3—Mo—O2108.43 (9)
N4—C7—H7A110.2O3—Mo—O4110.51 (9)
C8—C7—H7A110.2O2—Mo—O4108.75 (9)
H7B—C7—H7A108.5O3—Mo—O1110.04 (8)
N1—C8—C7108.83 (19)O2—Mo—O1110.65 (9)
N1—C8—H8B109.9O4—Mo—O1108.45 (8)
C7—C8—H8B109.9H5—O5—H6106 (4)
N1—C1—C2—N2−53.5 (2)C1—N1—Cu—N4121.02 (14)
N2—C3—C4—N3−55.8 (2)C8—N1—Cu—N4−0.30 (15)
N3—C5—C6—N4−53.4 (2)C1—N1—Cu—N2−27.13 (14)
N4—C7—C8—N1−53.0 (2)C8—N1—Cu—N2−148.44 (15)
C2—C1—N1—C8168.05 (19)C1—N1—Cu—O1−133.53 (13)
C2—C1—N1—Cu49.76 (19)C8—N1—Cu—O1105.15 (15)
C7—C8—N1—C1−87.1 (2)C6—N4—Cu—N3−1.03 (14)
C7—C8—N1—Cu28.1 (2)C7—N4—Cu—N3122.10 (15)
C1—C2—N2—C3−84.7 (2)C6—N4—Cu—N1−150.70 (15)
C1—C2—N2—Cu28.2 (2)C7—N4—Cu—N1−27.57 (14)
C4—C3—N2—C2168.62 (18)C6—N4—Cu—N2−76.5 (2)
C4—C3—N2—Cu52.62 (18)C7—N4—Cu—N246.6 (2)
C6—C5—N3—C4165.92 (19)C6—N4—Cu—O1101.31 (14)
C6—C5—N3—Cu49.29 (19)C7—N4—Cu—O1−135.56 (14)
C3—C4—N3—C5−85.7 (2)C2—N2—Cu—N3−150.00 (14)
C3—C4—N3—Cu28.5 (2)C3—N2—Cu—N3−29.46 (13)
C5—C6—N4—C7−87.4 (2)C2—N2—Cu—N1−0.44 (13)
C5—C6—N4—Cu28.7 (2)C3—N2—Cu—N1120.10 (14)
C8—C7—N4—C6168.22 (19)C2—N2—Cu—N4−74.40 (19)
C8—C7—N4—Cu50.08 (19)C3—N2—Cu—N446.1 (2)
C5—N3—Cu—N146.9 (2)C2—N2—Cu—O1107.77 (13)
C4—N3—Cu—N1−73.6 (2)C3—N2—Cu—O1−131.69 (13)
C5—N3—Cu—N4−26.66 (13)Mo—O1—Cu—N356.76 (13)
C4—N3—Cu—N4−147.15 (14)Mo—O1—Cu—N1−122.84 (11)
C5—N3—Cu—N2121.25 (14)Mo—O1—Cu—N4−32.74 (13)
C4—N3—Cu—N20.77 (14)Mo—O1—Cu—N2146.02 (11)
C5—N3—Cu—O1−132.40 (13)Cu—O1—Mo—O3−153.37 (11)
C4—N3—Cu—O1107.12 (14)Cu—O1—Mo—O286.82 (12)
C1—N1—Cu—N347.2 (2)Cu—O1—Mo—O4−32.38 (13)
C8—N1—Cu—N3−74.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.83 (2)1.95 (2)2.770 (2)169 (3)
N1—H1···O5ii0.86 (2)2.35 (2)3.156 (3)156 (3)
N2—H2···O1ii0.89 (2)2.19 (2)2.949 (2)143 (3)
N3—H3···O4i0.88 (2)2.28 (3)2.955 (3)133 (3)
N4—H4···O5iii0.88 (2)2.10 (2)2.928 (3)157 (3)
O5—H6···O2iv0.84 (2)1.85 (2)2.666 (3)163 (4)
C3—H3B···O3v0.992.363.345 (3)175

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) x, y, z−1; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2287).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Choi, K.-Y., Whang, M.-A., Lee, H.-H., Lee, K.-C. & Kim, M.-J. (2004). Transition Met. Chem.29, 792–796.
  • Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895.
  • Guo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158–163.
  • Hagrman, D., Warren, C. J., Haushalter, R. C., Seip, C., O’Connor, C. J., Rarig, R. S., Johnson, K. M., LaDuca, R. L. & Zubieta, J. (1998). Chem. Mater.10, 3294–3297.
  • Lu, T.-H., Lin, J.-L., Lan, W.-J. & Chung, C.-S. (1997). Acta Cryst. C53, 1598–1600.
  • Rarig, R. S., Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L., Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem.41, 2124–2133. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Yeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629–631.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography