PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1903.
Published online 2010 July 3. doi:  10.1107/S1600536810025122
PMCID: PMC3007243

4-Allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate

Abstract

In the mol­ecule of the title compound, C15H12BrN3·H2O, the phenyl ring is coplanar with the imidazopyridine ring system [dihedral angle = 0.4 (1)°]. The water mol­ecule is disordered over two positions with occupancies of 0.58 (1) and 0.42 (1), and it is linked to the main mol­ecule via an O—H(...)N hydrogen bond.

Related literature

For a related structure, see: Ouzidan et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1903-scheme1.jpg

Experimental

Crystal data

  • C15H12BrN3·H2O
  • M r = 332.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1903-efi1.jpg
  • a = 7.4363 (1) Å
  • b = 9.4238 (1) Å
  • c = 11.0829 (2) Å
  • α = 68.076 (1)°
  • β = 74.637 (1)°
  • γ = 79.736 (1)°
  • V = 692.02 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.97 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker X8 APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.588, T max = 0.664
  • 14314 measured reflections
  • 3158 independent reflections
  • 2791 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.078
  • S = 0.98
  • 3158 reflections
  • 203 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025122/ci5117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025122/ci5117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The imidazo[4,5-b]pyridine unit is an important heterocyclic nucleus found in a large number of molecules in medicinal chemistry. Heterocycles derived from such compounds posess useful medicinal properties. Owing to their importance, strategies have been developed for their synthesis. The most popular synthetic approach involves the cyclocondensation of 2,3-pyridinediamine with carboxylic acid derivatives or on condensation with aldehydes. An earlier study reported the crystal structure of 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010), which was synthesized by using a much more convenient route. The synthesis is extended to the title compound (Scheme I and Fig. 1).

The imidazopyridine ring system is coplanar with the phenyl ring at the 2-position of the five-membered ring [dihedral angle = 0.4 (1) °].

Experimental

To a solution 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.3 g, 1.09 mmol), was added a DMF (15 ml) solution of potassium carbonate (0.2 g, 1.42 mmol), tetra-n-butylammonium bromide (0.04 g, 0.1 mmol) and allyl bromide (0.11 ml, 1.31 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate-hexane (2:3) as eluent. Yellow crystals were isolated when the solvent was allowed to evaporate.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The water molecule is disordered over two positions in a 58 (1):42 (1) ratio. The H atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84 (1) Å and H···H 1.37 (1) Å; their Uiso values were tied to those of the oxygen atoms by a factor of 1.5.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of the molecule of C15H12BrN3.H2O at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The disorder in the water molecule is shown.

Crystal data

C15H12BrN3·H2OZ = 2
Mr = 332.20F(000) = 336
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4363 (1) ÅCell parameters from 7204 reflections
b = 9.4238 (1) Åθ = 2.3–27.2°
c = 11.0829 (2) ŵ = 2.97 mm1
α = 68.076 (1)°T = 293 K
β = 74.637 (1)°Prism, yellow
γ = 79.736 (1)°0.20 × 0.20 × 0.15 mm
V = 692.02 (2) Å3

Data collection

Bruker X8 APEXII area-detector diffractometer3158 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.588, Tmax = 0.664k = −12→12
14314 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1091P] where P = (Fo2 + 2Fc2)/3
3158 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = −0.39 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.78351 (3)0.73753 (2)0.425170 (19)0.05007 (9)
O11.1389 (9)0.1942 (6)0.8855 (4)0.0635 (16)0.582 (14)
H111.028 (3)0.229 (7)0.903 (7)0.095*0.582 (14)
H121.208 (6)0.237 (6)0.908 (6)0.095*0.582 (14)
O1'1.0501 (14)0.1260 (12)0.8987 (6)0.081 (3)0.418 (14)
H131.089 (17)0.191 (10)0.917 (11)0.122*0.418 (14)
H141.001 (16)0.059 (9)0.969 (6)0.122*0.418 (14)
N10.61186 (19)0.78390 (15)0.79149 (15)0.0323 (3)
N20.66816 (19)0.61173 (15)1.00435 (15)0.0347 (3)
N30.82874 (19)0.41411 (16)0.93153 (16)0.0358 (3)
C10.6432 (2)0.80592 (19)0.66074 (18)0.0350 (3)
H10.59760.89770.60350.042*
C20.7415 (2)0.6947 (2)0.61055 (19)0.0368 (4)
C30.8123 (2)0.55420 (19)0.69201 (19)0.0371 (4)
H30.87800.47910.65760.044*
C40.7798 (2)0.53257 (18)0.82533 (18)0.0331 (3)
C50.6797 (2)0.65118 (18)0.87503 (17)0.0313 (3)
C60.5091 (2)0.90590 (19)0.84527 (19)0.0381 (4)
H6A0.42100.96720.79080.046*
H6B0.43860.85870.93520.046*
C70.6408 (3)1.0068 (2)0.8464 (2)0.0481 (5)
H70.73670.96070.89170.058*
C80.6310 (5)1.1541 (3)0.7888 (3)0.0711 (7)
H8A0.53681.20370.74270.085*
H8B0.71801.21050.79330.085*
C90.7604 (2)0.46733 (18)1.03315 (18)0.0339 (3)
C100.7799 (2)0.37743 (19)1.17031 (18)0.0354 (4)
C110.7034 (3)0.4364 (2)1.2724 (2)0.0422 (4)
H11A0.64070.53421.25350.051*
C120.7194 (3)0.3511 (3)1.4024 (2)0.0498 (5)
H12A0.66780.39191.46990.060*
C130.8118 (3)0.2058 (3)1.4313 (2)0.0522 (5)
H13A0.82190.14811.51840.063*
C140.8890 (3)0.1467 (2)1.3309 (2)0.0509 (5)
H14A0.95200.04901.35050.061*
C150.8741 (3)0.2306 (2)1.2012 (2)0.0436 (4)
H150.92690.18921.13420.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.06412 (15)0.05036 (14)0.03761 (13)0.00253 (9)−0.01310 (9)−0.01926 (9)
O10.076 (3)0.056 (2)0.068 (2)0.020 (2)−0.0289 (19)−0.0341 (17)
O1'0.091 (5)0.084 (5)0.074 (3)0.022 (4)−0.021 (3)−0.044 (3)
N10.0350 (7)0.0260 (6)0.0359 (8)0.0023 (5)−0.0108 (6)−0.0108 (5)
N20.0360 (7)0.0294 (7)0.0370 (8)0.0013 (5)−0.0094 (6)−0.0104 (6)
N30.0352 (7)0.0288 (7)0.0422 (8)0.0013 (5)−0.0112 (6)−0.0107 (6)
C10.0373 (8)0.0307 (8)0.0371 (9)0.0006 (6)−0.0122 (7)−0.0106 (7)
C20.0394 (8)0.0368 (9)0.0373 (9)−0.0032 (7)−0.0104 (7)−0.0148 (7)
C30.0382 (8)0.0321 (8)0.0435 (10)0.0008 (6)−0.0084 (7)−0.0181 (7)
C40.0307 (7)0.0276 (7)0.0418 (9)0.0004 (6)−0.0095 (7)−0.0129 (7)
C50.0302 (7)0.0274 (7)0.0368 (9)−0.0010 (6)−0.0083 (6)−0.0116 (6)
C60.0422 (9)0.0305 (8)0.0394 (9)0.0086 (7)−0.0097 (7)−0.0143 (7)
C70.0513 (11)0.0487 (11)0.0530 (12)0.0017 (8)−0.0112 (9)−0.0303 (9)
C80.101 (2)0.0508 (13)0.0645 (16)−0.0212 (13)−0.0088 (14)−0.0227 (12)
C90.0293 (7)0.0299 (8)0.0402 (9)−0.0027 (6)−0.0087 (6)−0.0085 (7)
C100.0318 (8)0.0307 (8)0.0407 (9)−0.0048 (6)−0.0107 (7)−0.0058 (7)
C110.0443 (9)0.0376 (9)0.0419 (10)−0.0011 (7)−0.0118 (8)−0.0101 (7)
C120.0521 (11)0.0543 (12)0.0419 (11)−0.0061 (9)−0.0123 (9)−0.0132 (9)
C130.0524 (11)0.0521 (12)0.0427 (11)−0.0107 (9)−0.0178 (9)0.0021 (9)
C140.0495 (11)0.0370 (10)0.0561 (13)−0.0005 (8)−0.0199 (9)−0.0006 (9)
C150.0432 (9)0.0348 (9)0.0482 (11)0.0000 (7)−0.0120 (8)−0.0093 (8)

Geometric parameters (Å, °)

Br1—C21.8887 (19)C6—C71.487 (3)
O1—H110.834 (10)C6—H6A0.97
O1—H120.838 (10)C6—H6B0.97
O1—H130.43 (12)C7—C81.291 (3)
O1'—H110.97 (5)C7—H70.93
O1'—H130.836 (10)C8—H8A0.93
O1'—H140.838 (10)C8—H8B0.93
N1—C11.346 (2)C9—C101.470 (3)
N1—C51.354 (2)C10—C111.389 (3)
N1—C61.489 (2)C10—C151.396 (2)
N2—C51.322 (2)C11—C121.388 (3)
N2—C91.372 (2)C11—H11A0.93
N3—C91.344 (2)C12—C131.379 (3)
N3—C41.365 (2)C12—H12A0.93
C1—C21.375 (2)C13—C141.374 (3)
C1—H10.93C13—H13A0.93
C2—C31.398 (2)C14—C151.381 (3)
C3—C41.374 (3)C14—H14A0.93
C3—H30.93C15—H150.93
C4—C51.433 (2)
H11—O1—H12110.6 (18)H6A—C6—H6B108.0
H12—O1—H13101 (6)C8—C7—C6124.3 (2)
H11—O1'—H14114 (9)C8—C7—H7117.8
H13—O1'—H14110.2 (19)C6—C7—H7117.8
C1—N1—C5119.78 (14)C7—C8—H8A120.0
C1—N1—C6120.89 (14)C7—C8—H8B120.0
C5—N1—C6119.29 (14)H8A—C8—H8B120.0
C5—N2—C9101.46 (14)N3—C9—N2117.02 (16)
C9—N3—C4103.09 (13)N3—C9—C10122.81 (15)
N1—C1—C2120.95 (16)N2—C9—C10120.17 (16)
N1—C1—H1119.5C11—C10—C15118.49 (18)
C2—C1—H1119.5C11—C10—C9120.61 (16)
C1—C2—C3122.00 (17)C15—C10—C9120.90 (17)
C1—C2—Br1117.99 (14)C12—C11—C10120.79 (18)
C3—C2—Br1120.01 (13)C12—C11—H11A119.6
C4—C3—C2116.73 (15)C10—C11—H11A119.6
C4—C3—H3121.6C13—C12—C11120.0 (2)
C2—C3—H3121.6C13—C12—H12A120.0
N3—C4—C3132.84 (15)C11—C12—H12A120.0
N3—C4—C5106.85 (15)C14—C13—C12119.7 (2)
C3—C4—C5120.29 (15)C14—C13—H13A120.1
N2—C5—N1128.19 (15)C12—C13—H13A120.1
N2—C5—C4111.57 (14)C13—C14—C15120.79 (19)
N1—C5—C4120.24 (16)C13—C14—H14A119.6
C7—C6—N1110.95 (14)C15—C14—H14A119.6
C7—C6—H6A109.4C14—C15—C10120.2 (2)
N1—C6—H6A109.4C14—C15—H15119.9
C7—C6—H6B109.4C10—C15—H15119.9
N1—C6—H6B109.4
C5—N1—C1—C20.8 (2)C1—N1—C6—C7−91.40 (19)
C6—N1—C1—C2178.59 (16)C5—N1—C6—C786.45 (19)
N1—C1—C2—C30.4 (3)N1—C6—C7—C8124.1 (2)
N1—C1—C2—Br1−178.60 (12)C4—N3—C9—N20.46 (19)
C1—C2—C3—C4−0.4 (3)C4—N3—C9—C10179.96 (15)
Br1—C2—C3—C4178.57 (12)C5—N2—C9—N30.11 (19)
C9—N3—C4—C3177.66 (18)C5—N2—C9—C10−179.41 (14)
C9—N3—C4—C5−0.79 (17)N3—C9—C10—C11−178.67 (16)
C2—C3—C4—N3−178.94 (17)N2—C9—C10—C110.8 (2)
C2—C3—C4—C5−0.7 (2)N3—C9—C10—C150.8 (2)
C9—N2—C5—N1179.89 (16)N2—C9—C10—C15−179.71 (15)
C9—N2—C5—C4−0.63 (17)C15—C10—C11—C12−0.3 (3)
C1—N1—C5—N2177.63 (16)C9—C10—C11—C12179.18 (17)
C6—N1—C5—N2−0.2 (3)C10—C11—C12—C13−0.1 (3)
C1—N1—C5—C4−1.8 (2)C11—C12—C13—C140.5 (3)
C6—N1—C5—C4−179.69 (15)C12—C13—C14—C15−0.4 (3)
N3—C4—C5—N20.95 (19)C13—C14—C15—C100.0 (3)
C3—C4—C5—N2−177.74 (14)C11—C10—C15—C140.4 (3)
N3—C4—C5—N1−179.52 (14)C9—C10—C15—C14−179.12 (16)
C3—C4—C5—N11.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H11···N30.83 (1)2.14 (3)2.887 (4)149 (5)
O1—H12···N2i0.84 (1)2.41 (2)3.229 (7)165 (5)

Symmetry codes: (i) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5117).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA..
  • Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920-925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography